1 |
刘莎, 陈康康. 焦化废水深度处理技术研究进展[J].中国资源综合利用, 2020, 38(9):132-134.
|
|
LIU Sha, CHEN Kangkang. Research progress on advanced treatment technology of coking wastewater[J].China Resources Comprehensive Utilization, 2020, 38(9):132-134.
|
2 |
肖小双, 安雪姣, 叶晗媛, 等. 废水中硫氰酸盐的微生物降解研究进展[J].生物技术通报, 2021, 37(2):224-235.
|
|
XIAO Xiaoshuang, AN Xuejiao, YE Hanyuan, et al. Research progress on microbial degradation of thiocyanate in wastewater[J].Biotechnology Bulletin, 2021, 37(2):224-235.
|
3 |
YANG Wenlan, WANG Jicheng, HUA Ming, et al. Characterization of effluent organic matter from different coking wastewater treatment plants[J].Chemosphere, 2018, 203:68-75.
|
4 |
何绪文, 张斯宇, 何灿. 焦化废水深度处理现状及技术进展[J].煤炭科学技术, 2020, 48(1):100-107.
|
|
HE Xuwen, ZHANG Siyu, HE Can. Status and progress of coking wastewater advanced treatment technology[J].Coal Science and Technology, 2020, 48(1):100-107.
|
5 |
RAPER E, STEPHENSON T, FISHER R, et al. Characterisation of thiocyanate degradation in a mixed culture activated sludge process treating coke wastewater[J].Bioresource Technology, 2019, 288.Doi:10.1016/j.biortech.2019.121524.
|
6 |
PAN Jianxin, MA Jingde, WU Haizhen, et al. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J].Water Research, 2019, 150:216- 224.
|
7 |
ÁLVAREZ J R, ANTÓN F E, ÁLVAREZ-GARCÍA S, et al. Treatment of aqueous effluents from steel manufacturing with high thiocyanate concentration by reverse osmosis[J].Membranes, 2020, 10(12).Doi:10.3390/membranes10120437.
|
8 |
范铃琴, 马欣, 任静, 等. Fenton氧化去除焦化废水纳滤浓水中有机物的研究[J].工业用水与废水, 2020, 51(2):11-16.
|
|
FAN Lingqin, MA Xin, REN Jing, et al. Study on organic matters removal from nanofiltration concentrated coking wastewater by Fenton oxidation[J].Industrial Water & Wastewater, 2020, 51(2):11-16.
|
9 |
张恒, 李淑敏, 刘媛, 等. 微波强化Fenton技术对焦化废水生化出水的深度处理[J].环境工程学报, 2020, 14(6):1495-1502.
|
|
ZHANG Heng, LI Shumin, LIU Yuan, et al. Advanced treatment of bio-treated coking wastewater by microwave-enhanced Fenton process[J].Chinese Journal of Environmental Engineering, 2020, 14(6):1495-1502.
|
10 |
何灿, 黄祁, 何文丽, 等. 臭氧催化氧化深度处理焦化废水的研究及应用[J].给水排水, 2020, 56(10):65-71.
|
|
HE Can, HUANG Qi, HE Wenli, et al. Study on ozone catalytic oxidation in advanced treatment of coking wastewater and its application[J].Water & Wastewater Engineering, 2020, 56(10):65-71.
|
11 |
强喆林, 王玲, 吴迪, 等. 含酚废水处理技术研究进展[J].当代化工, 2021, 50(9):2206-2210.
|
|
QIANG Zhelin, WANG Ling, WU Di, et al. Research progress of phenolic wastewater treatment technology[J].Contemporary Che-
|
|
Industry mical,2021, 50(9):2206-2210.
|
12 |
孙培杰, 王林平, 徐乐瑾. 焦化废水中氰化物的处理技术研究进展[J].化工进展, 2021, 40(S1):386-396.
|
|
SUN Peijie, WANG Linping, XU Lejin. Advances in the treatment of cyanide in coking wastewater[J].Chemical Industry and Engineering Progress, 2021, 40(S1):386-396.
|
13 |
金玉涛, 史大勇, 郭利华, 等. 酚氰废水处理工程实践[J].工业水处理, 2021, 41(10):133-136.
|
|
JIN Yutao, SHI Dayong, GUO Lihua, et al. Engineering practice of phenol cyanide wastewater treatment[J].Industrial Water Treat-ment, 2021, 41(10):133-136.
|
14 |
高富聪, 陈国宝, 马云瑞, 等. 废水中硫氰酸根的脱除研究现状[J].有色金属:冶炼部分, 2021(3):143-149, 154.
|
|
GAO Fucong, CHEN Guobao, MA Yunrui, et al. Research status of removal of thiocyanate from wastewater[J].Nonferrous Metals:Extractive Metallurgy, 2021(3):143-149, 154.
|
15 |
CHO Y, CATTRALL R W, KOLEV S D. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water[J].Journal of Hazardous Materials, 2018, 341:297-303.
|
16 |
REN Gengbo, ZHOU Minghua, ZHANG Qizhan, et al. Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load[J].Water Research, 2019, 154:336-348.
|
17 |
谢莉, 刘吉明, 逯新宇, 等. 电催化氧化法—活性炭深度处理焦化废水[J].工业水处理, 2021, 41(8):69-74.
|
|
XIE Li, LIU Jiming, LU Xinyu, et al. Advanced treatment of coking wastewater by electrocatalytic oxidation-activated carbon adsorption[J].Industrial Water Treatment, 2021, 41(8):69-74.
|
18 |
初永宝, 陈德林, 刘生, 等. 分体式流化床催化臭氧—絮凝工艺深度处理焦化废水生化尾水[J].北京大学学报:自然科学版, 2022, 58(1):177-185.
|
|
CHU Yongbao, CHEN Delin, LIU Sheng, et al. Split fluidized bed catalytic ozone-flocculation process for advanced treatment of biochemical tail water from coking wastewater[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1):177- 185.
|
19 |
邹晓爽, 李江, 李彦澄, 等. 两级A/O工艺处理焦化废水有机污染物转化特征及细菌群落响应[J].环境科学研究, 2022, 35(5):1245-1256.
|
|
ZOU Xiaoshuang, LI Jiang, LI Yancheng, et al. Two-stage anoxic/oxic(A/O) process to remove organic pollutants and bacterial community in coking wastewater[J].Research of Environmental Sciences, 2022, 35(5):1245-1256.
|
20 |
曾婧. 活性炭处理含硫氰酸钠废水的研究[J].江西化工, 2019(4):138-140.
|
|
ZENG Jing. Study on treatment of wastewater containing sodium thiocyanate by activated carbon[J].Jiangxi Chemical Industry, 2019(4):138-140.
|
21 |
TURAN A, KEYIKOGLU R, KOBYA M, et al. Degradation of thiocyanate by electrochemical oxidation process in coke oven wastewater:Role of operative parameters and mechanistic stu-dy[J].Chemosphere, 2020, 255.Doi:10.1016/j.chemosphere.2020.127014.
|
22 |
周钦灵, 冯凡让, 王武雄, 等. 含硫氰酸根废液综合利用及无害化处置技术路线研究[J].广东化工, 2021, 48(11):90-91, 130.
|
|
ZHOU Qinling, FENG Fanrang, WANG Wuxiong, et al. Study on comprehensive utilization and harmless disposal technology of thiocyanate wastewater[J].Guangdong Chemical Industry, 2021, 48(11):90-91, 130.
|
23 |
谢佳兵. M x O y /C复合材料的制备及在酚类废水处理中应 用[D].太原:山西大学, 2019.
|
|
XIE Jiabing. Preparation of M x O y /C composites and its application in phenol wastewater treatment[D].Taiyuan:Shanxi University, 2019.
|
24 |
席乔悦. 氧化亚铜和硫氰酸亚铜纳米材料的制备及其光电性质研究[D].北京:中国科学院大学, 2018.
|
|
XI Qiaoyue. Preparation and photoelectric properties of cuprous oxide and cuprous cyanide nanomaterials[D].Beijing:University of Chinese Academy of Sciences, 2018.
|
25 |
李明威, 李金汞. 硫氰酸亚铜及其应用[J].无机盐工业, 1985, 17(4):36-37.
|
26 |
LIU Wujun, JIANG Hong, YU Hanqing. Emerging applications of biochar-based materials for energy storage and conversion[J].Energy & Environmental Science, 2019, 12(6):1751-1779.
|
27 |
YUAN Ye, DING Yujie, WANG Chunhui, et al. Multifunctional stiff carbon foam derived from bread[J].ACS Applied Materials & Interfaces, 2016, 8(26):16852-16861.
|
28 |
DONG Yongqiang, CHEN Yingmei, YOU Xu, et al. High photoluminescent carbon based dots with tunable emission color from orange to green[J].Nanoscale, 2017, 9(3):1028-1032.
|
29 |
杨惠芳. 纳米CuSCN的制备及其在复合涂料中的应用研究[D].天津:天津大学, 2007.
|
|
YANG Huifang. Study on the preparation of cuprous thiocyanate nanoparticles and application in nano-compound paint[D].Tianjin:Tianjin University, 2007.
|
30 |
雷乐成, 汪大翚. 水处理高级氧化技术[M].北京:化学工业出版社, 2001.
|
31 |
孙凤. 流化床非均相催化氧化处理工业废水中的硫氰酸盐[D].大连:大连工业大学, 2016.
|
|
SUN Feng. Fluidised bed heterogeneous catalytic oxidation treatment of industrial wastewater thiocyanate[D].Dalian:Dalian Poly-technic University, 2016.
|
32 |
LI Mingxin, LI Binchuan, CHEN Jianshe, et al. A novel green method for copper recovery from cuprous thiocyanate-containing acidified sediments in the gold industry[J].Journal of Cleaner Production, 2021, 329.Doi:10.1016/j.jclepro.2021.129729.
|