[1] |
张荣良, 史爱波, 金云学. 纳米氧化锌的制备与应用研究[J]. 无机盐工业, 2011, 43(10):1-4.
|
[2] |
况怡, 李军, 金央, 等. 液相合成纳米氧化锌及其光催化性能探讨[J]. 无机盐工业, 2019, 51(9):40-44.
|
[3] |
WANG Sheng, ZHU Bicheng, LIU Mingjin, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H-2-production activity[J]. Applied Catalysis B:Environmental, 2019, 243:19-26.
|
[4] |
HERNÁNDEZ-ALONSO M D, FRESNO F, SUÁREZ S. Development of alternative photocatalysts to TiO2:Challenges and opportunities[J]. Energy & Environmental Science, 2009, 2(12):1231-1257.
|
[5] |
LV Jie, ZHANG Chong, WANG Shuangling, et al. MOF-derived po-rous ZnO-Co3O4 nanocages as peroxidase mimics for colorimetric de-tection of copper(ii) ions in serum[J]. Analyst, 2021, 146(2):605-611.
|
[6] |
YIN Yilin, LIU Jingchao, WU Zengnan, et al. ZIF-8 calcination de-rived Cu2O-ZnO* material for enhanced visible-light photocataly-tic performance[J]. New Journal of Chemistry, 2021, 45(6):3095-3101.
|
[7] |
RAN Jingyu, XIAO Lihua, WANG Wei, et al. ZIF-8@polyoxometa-late derived Si-doped ZnWO4@ZnO nanocapsules with open-shaped structures for efficient visible light photocatalysis[J]. Chemical Co-mmunications, 2018, 54(98):13786-13789.
|
[8] |
XIAO Yang, WANG Xiaoli, YU Hui, et al. MOF-5 derived C-doped ZnO decorated with Cu cocatalyst for enhancing visible-light driven photocatalytic hydrogen evolution[J]. Journal of Physics and Chemi-stry of Solids, 2021, 149.Doi: 10.1016/j.jpcs.2020.109793.
|
[9] |
WANG Yingming, GE Shengsong, CHENG Wei, et al. Microwave hydrothermally synthesized metal-organic framework-5 derived C-doped ZnO with enhanced photocatalytic degradation of Rhodamine B[J]. Langmuir, 2020, 36(33):9658-9667.
|
[10] |
YU Weilai, ZHANG Jinfeng, PENG Tianyou. New insight into the enhanced photocatalytic activity of N-,C- and S-doped ZnO pho-tocatalysts[J]. Applied Catalysis B:Environmental, 2016, 181:220-227.
|
[11] |
WANG Qingbo, ZHOU Cui, CHEN Ling. The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method[J]. Optics Communications, 2014, 312:185-191.
|
[12] |
PEI Guangqing, XIA Changtai, WU Bo. Studies of magnetic interac-tions in Ni-doped ZnO from first-principles calculations[J]. Co-mputational Materials Science, 2008, 43(3):489-494.
|
[13] |
LATHIOTAKIS N N, ANDRIOTIS A N, MENON M. Codoping:A possible pathway for inducing ferromagnetism in ZnO[J]. Physical Review B, 2008, 78(19).Doi: 10.1103/PhysRevB.78.193311.
|
[14] |
HU Cuicui, HU Xiaoxia, LI Rong. MOF derived ZnO/C nanocompo-site with enhanced adsorption capacity and photocatalytic perfor-mance under sunlight[J]. Journal of Hazardous Materials, 2020, 385.Doi: 10.1016/j.jhazmat.2019.121599.
|
[15] |
HUSSAIN M Z, PAWAR G S, HUANG Z. Porous ZnO/carbon na-nocomposites derived from metal organic frameworks for highly efficient photocatalytic applications:A correlational study[J]. Car-bon, 2019, 146:348-363.
|
[16] |
CHEN Meng, WANG Xi, YU Yuehui. X-ray photoelectron spectro-scopy and auger electron spectroscopy studies of Al-doped ZnO films[J]. Applied Surface Science, 2000, 158(1):134-140.
|
[17] |
HSIEH P T, CHEN Yingchuang, KAO Kuosheng. Luminescence mechanism of ZnO thin film investigated by XPS measurement[J]. Applied Physics A, 2008, 90(2):317-321.
|
[18] |
ALSHAMMARI A S, CHI Lina, CHEN Xiaoping, et al. Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis[J]. RSC Advances, 2015, 5(35):27690-27698.
|
[19] |
TAUC J, GRIGOROVICI R, VANCU A. Optical properties and elec-tronic structure of amorphous germanium[J]. Physica Status Soli-di(B), 1966, 15(2):627-637.
|