[1] |
ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride(g-C3N4)-based photocatalysts for artificial photosynjournal and environmental remediation:Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12):7159-7329.
doi: 10.1021/acs.chemrev.6b00075
|
[2] |
CHEN Zhongshan, ZHANG Sai, LIU Yang, et al. Synjournal and fabrication of g-C3N4-based materials and their application in elimination of pollutants[J]. Science of the Total Environment, 2020, 731.Doi: 10.1016/j.scitotenv.2020.139054.
doi: 10.1016/j.scitotenv.2020.139054
|
[3] |
HAO Qiang, JIA Guohua, WEI Wei, et al. Graphitic carbon nitride with different dimensionalities for energy and environmental applications[J]. Nano Research, 2019, 13(1):18-37.
doi: 10.1007/s12274-019-2589-z
|
[4] |
孙海杰, 刘欣改, 陈志浩, 等. BiOI/g-C3N4光催化降解甲基橙研究[J]. 无机盐工业, 2021, 53(4):90-94.
|
[5] |
PANNERI S, GANGULY P, NAIR B N, et al. Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation[J]. Environ.Sci.Pollut.Res., 2017, 24(9):8609-8618.
|
[6] |
ZHENG Yu, ZHANG Zisheng, LI Chunhu. A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis[J]. J.Photochem.Photobiol.A:Chem., 2017, 332:32-44.
|
[7] |
DONG Fan, WU Liwen, SUN Yanjun, et al. Efficient synjournal of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21:15171-15174.
doi: 10.1039/c1jm12844b
|
[8] |
YAO Shanshan, XUE Sikang, PENG Sihuang, et al. Synjournal of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium-sulfur batteries[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(20):17921-17930.
doi: 10.1007/s10854-018-9906-2
|
[9] |
DEVINA R P, RISHABH S, NEHRA S P, et al. Effect of calcination temperature,pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution[J]. RSC Advances, 2019, 9:15381-15391.
doi: 10.1039/C9RA02201E
|
[10] |
YUAN Yupeng, XU Wentao, YIN Lisha, et al. Large impact of heating time on physical properties and photocatalytic H2 production of g-C3N4 nanosheets synthesized through urea polymerization in Ar atmosphere[J]. International Jouranl of Hydrogen Energy, 2013, 38(30):13159-13163.
|
[11] |
NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis[J]. Chemical Reviews, 2017, 117(17):11302-11336.
doi: 10.1021/acs.chemrev.7b00161
|
[12] |
WANG Y, WANG X, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:From photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew.Chem. Int.Ed.Engl., 2012, 51(1):68-89.
|
[13] |
ZHU Junjiang, XIAO Ping, LI Hailong, et al. Graphitic carbon nitride:Synjournal,properties,and applications in catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(19):16449-16465.
|
[14] |
YANG Jian, LIANG Yujun, LI Kai, et al. One-step synjournal of novel K+ and cyano groups decorated triazine-/heptazine-based g-C3N4 tubular homojunctions for boosting photocatalytic H2 evolution[J]. Applied Catalysis B:Environmental, 2020, 262:1-12.
|
[15] |
ZHANG Jinshui, ZHANG Mingwen, YANG Can, et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface[J]. Adv.Mater., 2014, 26(24):4121-4126.
|
[16] |
XING Weinan, TU Wenguang, HAN Zhonghui, et al. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Letters, 2018, 3(3):514-519.
doi: 10.1021/acsenergylett.7b01328
|
[17] |
IQBAL W, QIU B, ZHU Q, et al. Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production[J]. Appl.Catal.B: Environ., 2018, 232:306-313.
doi: 10.1016/j.apcatb.2018.03.072
|
[18] |
GUTZLER R. Band-structure engineering in conjugated 2D polymers[J]. Phys.Chem.Chem.Phys., 2016, 18(42):29092-29100.
|
[19] |
SAMANTA S, YADAV R, KUMAR A, et al. Surface modified C,O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production[J]. Applied Catalysis B:Environmental, 2019, 259:1-19.
|
[20] |
ZHANG Hao, JIA Luhan, WU Pan, et al. Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification[J]. Applied Surface Science, 2020, 527:1-11.
|
[21] |
JI Xueqiang, YUAN Xiaohong, WU Jiajie, et al. Tuning the photocatalytic activity of graphitic carbon nitride by plasma-based surface modification[J]. ACS Applied Materials & Interfaces, 2017, 9(29):24616-24624.
|
[22] |
DONG Guohui, HO Wingkei, WANG Chuanyi. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. Journal of Materials Chemistry A, 2015, 3(46):23435-23441.
doi: 10.1039/C5TA06540B
|
[23] |
XIE Yao, LI Yunxiang, HUANG Zhaohui, et al. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution[J]. Applied Catalysis B:Environmental, 2020, 265:1-7.
|
[24] |
JAISWAL M, MENON R. Polymer electronic materials:A review of charge transport[J]. Polymer International, 2006, 55(12):1371-1384.
doi: 10.1002/pi.2111
|
[25] |
赵洪霞, 沈晨, 陈秀英, 等. 基于EPR技术的5种纳米金属氧化物光生活性物种的形成研究[J]. 环境科学学报, 2017, 37(7):2609-2615.
|