无机盐工业 ›› 2021, Vol. 53 ›› Issue (6): 87-94.doi: 10.19964/j.issn.1006-4990.2020-0369
梁天权1,2,3(),郭燕1,陈锡勇1,2,詹峰1,2,张修海1,2,曾建民1,2,3
收稿日期:
2020-06-26
出版日期:
2021-06-10
发布日期:
2021-07-08
作者简介:
任磊(1995— ),男,博士研究生,研究方向为固废资源化利用;E-mail: 基金资助:
Liang Tianquan1,2,3(),Guo Yan1,Chen Xiyong1,2,Zhan Feng1,2,Zhang Xiuhai1,2,Zeng Jianmin1,2,3
Received:
2020-06-26
Published:
2021-06-10
Online:
2021-07-08
摘要:
固体氧化物燃料电池(SOFC)适用于多种燃料气体,高效清洁,是最有前景的燃料电池之一。氧化钪(Sc2O3)掺杂二氧化锆(ZrO2)系列(ScSZ)使氧化锆基电解质表现出优异的离子导电性。ScSZ基电解质晶粒纳米化呈现出了很好的电学性能而得到广泛深入的研究。但是ScSZ基电解质在中低温下会发生相变,产生低导电性的菱形相而影响其离子电导率。系统总结了单元或二元氧化物掺杂ScSZ电解质在中低温下的物相、晶体结构及电导率。多元氧化物复合掺杂ScSZ可有效防止在中低温下发生相变、稳定立方相ScSZ。采用不同方法制备纳米ScSZ基电解质,可很好地提高电解质的电导率。提出了ScSZ系列在中低温范围内(600~800 ℃)的发展方向:优化掺杂成分和掺杂量提高晶粒晶界电导率,使用不同工艺制备纳米电解质或不同制备方法制备新型结构电解质材料。
中图分类号:
梁天权,郭燕,陈锡勇,詹峰,张修海,曾建民. 纳米ScSZ基电解质中低温导电性研究进展[J]. 无机盐工业, 2021, 53(6): 87-94.
Liang Tianquan,Guo Yan,Chen Xiyong,Zhan Feng,Zhang Xiuhai,Zeng Jianmin. Research progress of conductivity of nano ScSZ-based electrolyte at medium and low temperature[J]. Inorganic Chemicals Industry, 2021, 53(6): 87-94.
表1
CeScSZ制备方法及其导电性
电解质 | 制备方法 | 测试 温度/℃ | 电导率/ (S·cm-1) |
---|---|---|---|
1Ce10ScSZ[ | 固相合成:1 400 ℃烧结 | 600 | 0.046(高纯度) 0.033(低纯度) |
1Ce10ScSZ[ | 1 500 ℃烧结2 h,平均粒 径为5.9 μm | 800 | 0.140 |
1Ce10ScSZ[ | 甘氨酸-硝酸盐法(MW- GNP):微波中固溶燃烧合成,700 ℃煅烧2 h,1 300 ℃ 烧结5 h | 500~ 800 | 0.033~ 0.184 |
1Ce9ScSZ[ | 固相合成:1 335 ℃煅烧 6 h,1 550 ℃烧结10 h | 700 600 | 0.032 0.018 8 |
1Ce10ScSZ[ | 水热法:800 ℃煅烧2 h, 1 400 ℃烧结2 h,平均粒 径为20.2 nm | 800 | 0.131 |
1Ce10ScSZ[ | 微波烧结法:在微波炉中1 335 ℃烧结15 min | 800 | 0.280 |
1Ce10ScSZ[ | 新型固液方法(SLM): 1 000 ℃煅烧2 h,1 550 ℃煅烧5 h | 800 | 0.140 |
1Ce10ScSZ[ | 化学共沉淀法:1 500 ℃烧结5 h | 800 | 0.040 |
1Ce10ScSZ[ | 溶胶-凝胶法:600 ℃煅烧24 h,1 500 ℃烧结5 h | 600 | 0.011 4 |
1Ce10ScSZ[ | 沉淀-共沸蒸馏法:1 600 ℃ 烧结 | 800 | 0.084 |
表2
其他阳离子掺杂改性ScSZ电解质电导率
电解质 | 制备方法 | 测试 温度/℃ | 电导率/ (S·cm-1) |
---|---|---|---|
4Y4ScSZ[ | 溶胶凝胶-滴涂沉积法:1 000 ℃煅烧6 h,平均直径为144 nm,活化能为0.73 eV | 700 | 0.120 |
1Eu10ScSZ[ | 固相合成法:降低β→c转变温度,室温下为立方相 | 500 | 0.002 |
3Mg9ScSZ[ | 尿素共沉淀合成法:1 200 ℃长时间处理不发生相变, 1 600 ℃ 3 h不影响致密性,相对密度约为97% | 700 800 | 0.028 0.073 |
1Nb10ScSZ[ | 固相合成法:1 300 ℃煅烧6 h,1 550 ℃烧结10 h,在650 ℃时比11ScSZ高80% | 650 700 | 0.018 8 0.031 8 |
3LaScSZ[ | 化学共沉淀法:800 ℃煅烧5 h, 1 550 ℃烧结6 h,室温下稳定立方相,晶粒为20~30 nm,晶界阻抗降低 | 500~ 660 | 0.021~ 0.024 |
1Mn10ScSZ[ | USP(超声喷雾热解)法:1 400 ℃煅烧10 h | 800 | 0.112 |
1Hf10ScSZ[ | 固相合成法:1 550 ℃烧结5 h | 600 | 0.008 8 |
[1] | 吴雨泽, 王宇旸, 范红途. 固体氧化物燃料电池(SOFC)系统的研究现状[J]. 能源研究与利用, 2019(1):40-46. |
[2] | Ivers-Tiffee E, Weber A, Herbstritt D. Materials and technologies for SOFC-components[J]. Journal of the European Ceramic Society, 2001,21(10):1805-1811. |
[3] | Raharjo J, Ali S A M, Arjasa O P, et al. Synjournal and characteriza-tion of uniform-sized cubic ytterbium scandium co-doped zirconium oxide(1Yb10ScSZ) nanoparticles by using basic amino acid as or-ganic precursor[J]. International Journal of Hydrogen Energy, 2017,42(14):9274-9283. |
[4] | Mohammadreza D, Muhamad A M Y, Noordin M Y. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones[J]. Rare Earths, 2014,32(10):989-1002. |
[5] | Lu X, Zhao J, Wang X. Bi2O3 nanoporous filmfabricated by anodic oxidation and its photoelectrochemical performance[J]. Solid State Electrochem, 2013,17(4):1215-1219. |
[6] | Patakangas J, Ma Y, Jing Y. Review and analysis of characterization methods and ionic conductivities for lowtemperature solid oxide fuel cells(LT-SOFC)[J]. Power Sources, 2014,263:315-331. |
[7] | Rajeswari K, Suresh M B, Chakravarty D, et al. Effect of nano-grain size on the ionic conductivity of spark plasma sintered 8YSZ elec-trolyte[J]. International Journal of Hydrogen Energy, 2012,37(1):511-517. |
[8] | Jiang H, Guo R, Ren J. Effects of ZnO additive on sinterability and electrochemical performances of 8YSZ electrolyte[J]. Journal of the Chinese Ceramic society, 2010,33(8):1434-1439. |
[9] | Tiunova O V, Khabas T A, Bredikhin S I, et al. Zirconia-based solid electrolyte obtained by tape casting[J]. Inorganic Materials:App-lied Research, 2016,7(2):278-284. |
[10] | Souza J P, Grosso R L, Muccillo R, et al. Phase composition and io-nic conductivity of zirconia stabilized with scandia and europia[J]. Materials Letters, 2018,229:53-56. |
[11] | Ng C K, Ramesh S, Tan C Y, et al. Microwave sintering of ceria-do-ped scandia stabilized zirconia as electrolyte for solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2016,41(32):14184-14190. |
[12] | Kumar A, Jaiswal A, Sanbui M, et al. Scandia stabilized zirconia-ceria solid electrolyte (xSc1CeSZ,5<x<11) for IT-SOFCs:Struc-ture and conductivity studies[J]. Scripta Materialia, 2016,121:10-13. |
[13] | Fabbri E, Pergolesi D, Traversa E. Electrode materials:A challenge for the exploitation of protonic solid oxide fuel cells[J]. Science and Technology of Advanced Materials, 2010,11(4):044301-044309. |
[14] | Lakshmi V V, Bauri R, Gandhi A S, et al. Synjournal and characte-rization of nanocrystalline ScSZ electrolyte for SOFCs[J]. Interna-tional Journal of Hydrogen Energy, 2011,36(22):14936-14942. |
[15] | Xue Q, Huang X, Wang L, et al. Computational and experimental investigations of defect interaction and ionic conductivity in doped zirconia[J]. Physical Review Applied, 2018,10(1).Doi: 10.1103/PhysRevApplied.10.014032. |
[16] | Tan J, Su Y, Tang H, et al. Effect of calcined parameters on micro-structure and electrical conductivity of 10Sc1CeSZ[J]. Journal of Alloys and Compounds, 2016,686:394-398. |
[17] | Chen X, Zhou M, Shi J, et al. Microstructure and electrical conduc-tivity of A-site fully stoichiometric Na0.5+xBi0.5-xTiO3-δ with different Na/Bi ratios[J]. Ceramics International, 2019,45(9):11438-11447. |
[18] | 徐高峰. 氧化锆纳米粉体的制备及稳定性研究[D]. 郑州:郑州大学, 2017. |
[19] | Raza M, Cornil D, Cornil J, et al. Oxygen vacancy stabilized zirco-nia (OVSZ):a joint experimental and theoretical study[J]. Scri-pta Materialia, 2016,124:26-29. |
[20] | Chen C, Liang T, Guo Y, et al. Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4+ V2O5 molten salts at 1 000 ℃[J]. Corrosion Science, 2019,158. Doi: 10.1016/j.corsci.2019.108094. |
[21] | Borik M A, Bredikhin S I, Kulebyakin A V, et al. Melt growth,st-ructure and properties of(ZrO2)1-x(Sc2O3) x solid solution crystals (x=0.035-0.11)[J]. Journal of Crystal Growth, 2016,443:54-61. |
[22] | Gao Z, MognI L V, Miller E C, et al. A perspective on low-tempera-ture solid oxide fuel cells[J]. Energy & Environmental Science, 2016,9(5):1602-1644. |
[23] | Brodnikovska I, Korsunska N, Khomenkova L, et al. Grains,grain boundaries and total ionic conductivity of 10Sc1CeSZ and 8YSZ solid electrolytes affected by crystalline structure and dopant co-ntent[J]. Materials Today:Proceedings, 2019(6):79-85. |
[24] | Fini D, Badwal S P S, Giddey S, et al. Evaluation of Sc2O3-CeO2- ZrO2 electrolyte-based tubular fuel cells using activated charcoal and hydrogen fuels[J]. Electrochimica Acta, 2018,259:143-150. |
[25] | Jais A A, Ali S A M, Anwar M, et al. Enhanced ionic conductivity of scandia-ceria-stabilized-zirconia(10Sc1CeSZ) electrolyte synt-hesized by the microwave-assisted glycine nitrate process[J]. Ce-ramics International, 2017,43(11):8119-8125. |
[26] | Tan J, Su Y, Tang H, et al. Effect of calcined parameters on micro-structure and electrical conductivity of 10Sc1CeSZ[J]. Journal of Alloys and Compounds, 2016,686:394-398. |
[27] | Liu M, He C R, Wang W G, et al. Synjournal and characterization of 10Sc1CeSZ powders prepared by a solid-liquid method for electro-lyte-supported solid oxide fuel cells[J]. Ceramics International, 2014,40(4):5441-5446. |
[28] | Liu M, He C, Wang J, et al. Investigation of (CeO2)x(Sc2O3)(0.11-x)(ZrO2)0.89(x=0.01~0.10) electrolyte materi-als for intermediate-temperature solid oxide fuel cell[J]. Journal of Alloys and Compounds, 2010,502(2):319-323. |
[29] | Abbas H A, Argirusis C, Kilo M, et al. Preparation and conductivity of ternary scandia-stabilised zirconia[J]. Solid State Ionics, 2011,184(1):6-9. |
[30] | Wang Z, Cheng M, Bi Z, et al. Structure and impedance of ZrO2 do-ped with Sc2O3 and CeO2[J]. Materials Letters, 2015,59(19/20):2579-2582. |
[31] | 刘丽伟. Bi2O3/YSZ和Bi2O3/YBSZ电解质的合成制备和表征[D]. 杭州:浙江大学, 2016. |
[32] | Bai B, Sammes N M, Smirnova A L. Physical and electrochemical characterization of Bi2O3-doped scandia stabilized zirconia[J]. Journal of Power Sources, 2008,176(1):76-81. |
[33] | Hirano M, Oda T, Ukai K, et al. Suppression of rhombohedral-phase appearance and low-temperature sintering of scandia-doped cubic-zirconia[J]. Journal of the American Ceramic Society, 2002,85(5):1336-1338. |
[34] | Hirano M, Oda T, Ukai K, et al. Effect of Bi2O3 additives in Sc sta-bilized zirconia electrolyte on a stability of crystal phase and elec-trolyte properties[J]. Solid State Ionics, 2003,158(3/4):215-223. |
[35] | Sarat S, Sammes N, Smirnova A. Bismuth oxide doped scandia-sta-bilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2006,160(2):892-896. |
[36] | Bai B, Mcphee W A, Smirnova A, et al. A comparison and charac-terization of CeO2-doped and Bi2O3-doped scandia stabilized zi-rconia as IT-SOFC electrolytes[J]. ECS Transactions, 2007,7(1):2213-2221. |
[37] | Agarkov D A, Borik M A, Bredikhin S I, et al. Transport properties of single crystals of solid electrolytes based on ZrO2-Sc2O3 co-do-ped by scandia,yttria,ytterbia and ceria[J]. Chemical Probhems, 2019,2(17):235-245. |
[38] | Omar S, Najib W B, Chen W, et al. Electrical conductivity of 10 mol % Sc2O3-1 mol % M2O3-ZrO2 ceramics[J]. Journal of the American Ceramic Society, 2012,95(6):1965-1972. |
[39] | Jeon H J, Kim K J, Kim M Y, et al. Fabrication and electrochemical characterization of SOFC single cell with 6Yb4ScSZ electrolyte po-wder by tape-casting and co-sintering[J]. Journal of the Ceramic Society of Japan, 2015,123(1436):229-234. |
[40] | Yuan F, Wang J, Miao H, et al. Investigation of the crystal structure and ionic conductivity in the ternary system(Yb2O3)x-(Sc2O3)(0.11-x)- (ZrO2)0.89(x=0~0.11)[J]. Journal of Alloys and Compounds, 2013,549:200-205. |
[41] | Alfeche D M, Cervera R B. Highly conducting Sc and Y co-doped ZrO2 thin film solid electrolyte on a porous Ni/YSZ electrode pre-pared via simple drop-coating method[J]. Ceramics International, 2020,46(8):10561-10567. |
[42] | Accardo G, Agli G D, Frattini D, et al. Electrical behaviour and mi-crostructural characterization of magnesia co-doped ScSZ nanopo-wders synthesized by urea co-precipitation[J]. Chemical Engineer-ing Transactions, 2017,57:1345-1350. |
[43] | Kumar A, Singh R P, Singh S, et al. Phase stability and ionic con-ductivity of cubic xNb2O5-(11-x)Sc2O3-ZrO2(0≤x≤4)[J]. Jour-nal of Alloys and Compounds, 2017,703:643-651. |
[44] | Pastor M, Prasad A, Biswas K, et al. Microstructural and impedance study of nanocrystalline lanthana-doped scandia-stabilized zirco-nia[J]. Journal of Nanoparticle Research, 2012,14(8):1-11. |
[45] | Choi Y, Lee S, Wackerl J, et al. Fabrication of scandia-stabilized zirconia electrolyte with a porous and dense composite layer for so-lid oxide fuel cells[J]. Ceramics International, 2012,38:5485-5488. |
[46] | Omar S, Najib W B, Bonanos N. Conductivity ageing studies on 1M10ScSZ(M 4+=Ce,Hf)[J]. Solid State Ionics, 2011,189(1):100-106. |
[47] | Guo X. Roles of alumina in zirconia for functional applications[J]. Journal of the American Ceramic Society, 2003,86(11):1867-1873. |
[48] | Lybye D, Liu Y L. A study of complex effects of alumina addition on conductivity of stabilised zirconia[J]. Journal of the European Ceramic Society, 2006,26(4/5):599-604. |
[49] | Guo C X, Wang J X, He C R. et al. Effect of alumina on the proper-ties of ceria and scandia co-doped zirconia for electrolyte-suppo-rted SOFC[J]. Ceramics International, 2013,39(8):9575-9582. |
[50] | Feighery A J, Irvine J T S. Effect of Alumina additions upon elec-trical properties of 8mol% yttria-stabilised zirconia[J]. Solid State Ionics, 1999,121(1/2/3/4):209-216. |
[51] | Lv Z, Guo R, Yao P, et al. Effects of Al2O3 and/or CaO on properties of yttria stabilized zirconia electrolyte doped with multi-elemen-ts[J]. Materials & Design, 2007,28(4):1399-1403. |
[52] | Agarkov D A, Borik M A, Bredikhin S I, et al. Structure and trans-port properties of zirconia crystals co-doped by scandia,ceria and yttria[J]. Journal of Materiomics. 2019,5(2):273-279. |
[53] | Lv Z G, Yao P, Guo R S, et al. Study on zirconia solid electrolytes doped by complex additives[J]. Materials Science and Engineer-ing:A, 2007,458(1/2):355-360. |
[54] | Knoner G, Reimann K, Rower R, et al. Enhanced oxygen diffusivity in interfaces of nanocrystalline ZrO2·Y2O3[J]. Proceedings of the National Academy of Sciences, 2003,100(7):3870-3873. |
[55] | Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures[J]. Science, 2008,321(5889):676-680. |
[56] | 程浩. 纳米氧化锆粉体抗团聚老化性的研究[D]. 武汉:湖北工业大学, 2009. |
[57] | Xue Q N, Huang X W, Zhang H, et al. Synjournal and characteriza-tion of high ionic conductivity ScSZ core/shell nanocomposites[J]. Journal of Rare Earths, 2017,35(6):567-573. |
[58] | Kazlauskas S, Kazakevicius E, Kezionis A. et al. Electrical proper-ties of scandia and ceria-stabilized zirconia ceramics[J]. Solid State Ionics, 2017,310:143-147. |
[59] | Hongmin A O, Xiangsheng L I U, Zhang H, et al. Preparation of ac-andia stabilized zirconia powder using microwave-hydrothermal method[J]. Journal of Rare Earths, 2015,33(7):746-751. |
[60] | Yao L, Liu W, Ou G, et al. Phase stability and high conductivity of ScSZ nanofibers:Effect of the crystallite size[J]. Journal of Mate-rials Chemistry A, 2015,3(20):10795-10800. |
[61] | Cho G Y, Lee Y H, Hong S W, et al. High-performance thin film solid oxide fuel cells with scandia-stabilized zirconia(ScSZ) thin film electrolyte[J]. International Journal of Hydrogen Energy, 2015,40(45):15704-15708. |
[1] | 董明哲, 李可昕, 叶秀深, 马珍, 李生廷, 李权, 吴志坚. 氯化镁熔盐水合物的电化学性质研究[J]. 无机盐工业, 2024, 56(2): 51-56. |
[2] | 许希军, 林见烽, 罗雄伟, 赵经纬, 霍延平. NASICON型Na1+x Zr2Si x P3-x O12固态电解质及其钠金属电池研究进展[J]. 无机盐工业, 2024, 56(11): 1-14. |
[3] | 秦野, 刘畅, 韩松, 王硕. 水系锌锰电池电解液的电导性质研究[J]. 无机盐工业, 2024, 56(11): 132-138. |
[4] | 陈奇, 廖丹葵, 张庆年, 严金生, 黄煜, 陈小鹏, 童张法. 电导率法快捷高效测定生石灰活性度[J]. 无机盐工业, 2023, 55(9): 114-120. |
[5] | 康乐, 景茂祥, 李东红, 扈鑫雨, 贾春燕. 铝酸锂纳米棒改性固态电解质的制备及电化学性能研究[J]. 无机盐工业, 2023, 55(8): 65-70. |
[6] | 张宇,祁晓玉,冯梦瑶,孙楠楠,赵翠莲. 电导率调控介孔二氧化硅增透膜透过性能的研究[J]. 无机盐工业, 2022, 54(8): 80-84. |
[7] | 东鹏,周英杰,侯敏杰,杨冬荣,戴永年,梁风. 钠离子电池正极材料Na3V2(PO4)3研究进展[J]. 无机盐工业, 2022, 54(5): 1-10. |
[8] | 任磊,马玉亮,贾阳杰,王星军,杨凤玲,程芳琴. 精炼镁渣的性能分析及应用[J]. 无机盐工业, 2021, 53(6): 164-170. |
[9] | 卢超,李明明,吴小强,安旭光,孔清泉,王小炼. 固态无机电解质Li7La3Zr2O12的改性研究进展[J]. 无机盐工业, 2021, 53(11): 10-16. |
[10] | 黄振旭,陈凌霞,任丽,李颖欣,贾潘潘,张文慧. Na2SiO3/ZrO2固体碱催化大豆油制备生物柴油的研究[J]. 无机盐工业, 2020, 52(6): 83-86. |
[11] | 赵艳琴,闫书山,王岭,曹吉林. Ba 2+和In 3+共掺杂硅酸镧固体电解质的制备及性能[J]. 无机盐工业, 2020, 52(1): 49-53. |
[12] | 张旺玺, 袁祖培, 王艳芝. 钇稳定纳米氧化锆的制备工艺研究[J]. 无机盐工业, 2012, 44(1): 22-. |
[13] | 冯旺军;耿丹;成金娟;时均增;杨华. 铜-镍-铁-铁酸镍金属陶瓷的导电性研究[J]. 无机盐工业, 2010, 0(7): 0-0. |
[14] | 吴刚强;郎中敏;赫文秀;王正德. 沉淀法制备纳米羟基磷灰石结晶动力学研究[J]. 无机盐工业, 2009, 0(7): 0-0. |
[15] | 吴群英;陈楠;郭子峰;袁慎忠;张燕;王林江. 高性能铈锆钇储氧材料的制备及应用研究[J]. 无机盐工业, 2009, 0(1): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|