[1] |
Suwanboon S, Amornpitoksuk P, Bangrak P , et al. Structural, optical and antibacterial properties of nanocrystalline Zn1-xLaxO compound semiconductor[J]. Materials Science in Semiconductor Processing, 2013,16(2):504-512.
|
[2] |
刘金家, 徐爱菊 . 过渡金属单氧化物光催化剂的研究进展[J]. 宝鸡文理学院学报:自然科学版, 2016,36(2):47-52.
|
[3] |
Rooydell R, Brahma S, Wang R C , et al. Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties[J]. Journal of Alloys & Compounds, 2016,691:936-945.
|
[4] |
Wang M, Xu J, Sun T , et al. Facile photochemical synjournal of hierarchical cake-like ZnO/Ag composites with enhanced visible-light photocatalytic activities[J]. Materials Letters, 2018,219:236-239.
|
[5] |
Xin D L, Jing L, Si C , et al. Electrical transport properties of Aldoped ZnO films[J]. Applied Surface Science, 2012,263:486-490.
|
[6] |
Sun Y, Shen Z, Xin S , et al. Ultra-fine Co-doped ZnO nanoparticles on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta, 2016,224:561-570.
|
[7] |
Wu J, Tang X, Pu C , et al. Twin grain boundary mediated ferromagnetic coupling in Co-doped ZnO:First-principles calculations[J]. Solid State Communications, 2017,250:41-44.
|
[8] |
Karim A, Tahir N, Chuang Y D , et al. Surface defects:Possible source of room temperature ferromagnetism in Co-doped ZnO nanorods[J]. Journal of Physical Chemistry C, 2010,117(17):8968-8973.
|
[9] |
Beltrán J J, Barrero C A, Punnoose A . Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles[J]. Physical Chemistry Chemical Physics, 2015,17(23):15284-15296.
|
[10] |
Kim H, Pak Y, Jeong Y , et al. Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability[J]. Sensors & Actuators B Chemical, 2018,262:460-468.
|
[11] |
Liu L, Li S, Zhuang J , et al. Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning[J]. Sensors & Actuators B Chemical, 2011,155(2):782-788.
|
[12] |
Meshki M, Behpour M, Masoum S . Application of Fe doped ZnO nanorods-based modified sensor for determination of sulfamethoxazole and sulfamethizole using chemometric methods in voltammetric studies[J]. Journal of Electroanalytical Chemistry, 2015,740:1-7.
|
[13] |
Demirci S, Dikici T, Yurddaskal M , et al. Synjournal and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances[J]. Applied Surface Science, 2016,390:591-601.
|
[14] |
Ilknur Altın, Sökmen M, Bıyıklıoglu Z . Sol gel synjournal of cobaltdoped TiO2, andits dye sensitization for efficient pollutant removal[J]. Materials Science in Semiconductor Processing, 2016,45:36-44.
|
[15] |
Liu Y, Xu C, Feng Z D . Characteristics and anticorrosion performance of Fe-doped TiO2, films by liquid phase deposition method[J]. Applied Surface Science, 2014,314(24):392-399.
|
[16] |
Wei L, Xia X, Yang Y , et al. Variable temperature spectroelectro chemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells[J]. RSC Advances, 2016,6(72):68341-68350.
|
[17] |
Lu L, Guo M, Thornley S , et al. Remote plasma sputtering deposited Nb-doped TiO2 with remarkable transparent conductivity[J]. Solar Energy Materials & Solar Cells, 2016,149:310-319.
|
[18] |
Choudhury B, Choudhury A, Borah D . Interplay of dopants and defects in making Cu doped TiO2 nanoparticle a ferromagnetic semiconductor[J]. Journal of Alloys & Compounds, 2015,646:692-698.
|
[19] |
You M, Kim T G, Sung Y M . Synjournal of Cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations[J]. Crystal Growth & Design, 2016,10(2):296-298.
|
[20] |
Duta M, Predoana L, Calderon-Moreno J M, et al. Nb-doped TiO2, sol-gel films for CO sensing applications[J]. Materials Science in Semiconductor Processing, 2016,42:397-404.
|
[21] |
Hussain M, Tariq S, Ahmad M , et al. Ag-TiO2, nanocomposite for environmental and sensing applications[J]. Materials Chemistry & Physics, 2016,181:194-203.
|
[22] |
Lassoued A, Lassoued M S, García-Granda S , et al. Synjournal and characterization of Ni-doped α-Fe2O3, nanoparticles through coprecipitation method with enhanced photocatalytic activities[J]. Journal of Materials Science:Materials in Electronics, 2018,29:5726-5737.
|
[23] |
Mansour H, Bargougui R, Autret-Lambert C , et al. Co-precipitation synjournal and characterization of tin-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities[J]. Journal of Physics & Chemistry of Solids, 2017,114:1-7.
|
[24] |
Suresh R, Giribabu K, Manigandan R , et al. Synjournal of Co 2+-doped Fe2O3 photocatalyst for degradation of pararosaniline dye [J]. Solid State Sciences, 2017,68:39-46.
|
[25] |
Aroutiounian V M, Arakelyan V M, Shahnazaryan G E , et al. Photoelectrochemistry of tin-doped iron oxide electrodes[J]. Solar Energy, 2007,81(11):1369-1376.
|
[26] |
Bak A, Choi W, Park H . Enhancingthe photoelectrochemical performance of hematite(α-Fe2O3) electrodes by cadmium incorporation[J]. Applied Catalysis B:Environmental, 2011,110:207-215.
|
[27] |
Akbar A, Niaz M, Riaz S , et al. Magnetic and structural properties of Cr-doped Fe2O3[J]. Materials Today Proceedings, 2015,2(10):5679-5683.
|
[28] |
Akbar A, Bashir S, Riaz S , et al. Magnetic properties of Co-doped Fe2O3 thin films[J]. Materials Today Proceedings, 2015,2(10):5674-5678.
|
[29] |
Picasso G, Kou M R S, Vargasmachuca O, et al. Sensors based on porous Pd-dopedhematite(α-Fe2O3 ) for LPG detection[J]. Micro porous & Mesoporous Materials, 2014,185:79-85.
|
[30] |
Kumar M P, Josephine G A S, Sivasamy A. Oxidation of organicdye using nanocrystalline rare earth metal ion doped CeO2 under UV and Visible light irradiations[J]. Journal of Molecular Liquids, 2017,242:789-797.
|
[31] |
Singh K, Kumar K, Srivastava S , et al. Effect of rare-earth doping in CeO2 matrix:Correlations with structure, catalytic and visible light photocatalytic properties[J]. Ceramics International, 2017,43(18):17041-17047.
|
[32] |
Goh K H, Haseeb A S M A, Wong Y H. Lanthanide rare earth oxide thin film as an alternative gate oxide[J]. Materials Science in Semiconductor Processing, 2017,68:302-315.
|
[33] |
Babu A S, Bauri R, Reddy G S . Processing and conduction behavior of nano-crystalline Gd-doped and rare earth co-doped ceria electrolytes[J]. Electrochimica Acta, 2016,209:541-550.
|
[34] |
Prabaharan D D M, Sadaiyandi K, Mahendran M , et al. Investigating the effect of Mn-doped CeO2, nanoparticles by co-precipitation method[J]. Applied Physics A, 2018,124(2):861-867.
|
[35] |
Chinnu M K, Anand K V, Kumar R M , et al. Synjournal and enhanced electrochemical properties of Sm:CeO2, nanostructure by hydrothermal route[J]. Materials Letters, 2013,113(12):170-173.
|
[36] |
Abbas F, Iqbal J, Jan T , et al. Differential cytotoxicity of ferromagnetic Co doped CeO2, nanoparticles against human neuroblastoma cancer cells[J]. Journal of Alloys & Compounds, 2015,648:1060-1066.
|
[37] |
Abbas F, Jan T, Iqbal J , et al. Inhibition of Neuroblastoma cancer cells viability byferromagnetic Mn doped CeO2 monodisperse nanoparticles mediated through reactive oxygen species[J]. Materials Chemistry & Physics, 2016,173:146-151.
|
[38] |
Niu X, Zhong H, Wang X , et al. Sensing properties of rare earth oxide doped In2O3 by a sol-gel method[J]. Sensors & Actuators B:Chemical, 2006,115(1):434-438.
|
[39] |
Han D, Yang J J, Gu F , et al. Effects of rare earth elements doping on ethanol gas-sensing performance of three-dimensionally ordered macroporous In2O3[J]. RSC Advances, 2016,6(51):45085-45092.
|