[1] |
Madeline Shuhua Goh, Martin Pumera. Graphene-based electroche-mical sensor for detection of 2,4,6-trinitrotoluene (TNT) in sea-water:The comparison of single-,few-,and multilayer graphene nanoribbons and graphite microparticles[J]. Analytical & Bioanaly-tical Chemistry, 2011,399(1):127-131.
|
[2] |
Han Baoguo, Sun Shengwei, Ding Siqi, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A:Applied Science and Manufacturing, 2015,70:69-81.
|
[3] |
卢珍, 吴献, 杨昆. 炭黑碳纤维复相导电混凝土的导电性能研究[J].混凝土, 2014(11):81-83,86.
|
[4] |
Sun Guoxing, Liang Rui, Lu Zeyu, et al. Mechanism of cement/car-bon nanotube composites with enhanced mechanical properties ac-hieved by interfacial strengthening[J]. Construction & Building Ma-terials, 2016,115(15):87-92.
|
[5] |
马颖, 安博星, 王丹, 等. 石墨烯/水泥复合材料的制备及电学、压敏性能研究[J].混凝土, 2015(9):72-76.
|
[6] |
Tong Teng, Fan Zhou, Liu Qiang, et al. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro-and ma-cro-properties of Cementitions materials[J]. Construction and Build-ing Materials, 2016,106:102-114.
|
[7] |
吕生华, 孙婷, 刘晶晶, 等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制[J]. 复合材料学报, 2014,31(3):644-652.
|
[8] |
Dunne N, Ormsby R, Mitchell C A. Carbon nanotubes in acrylic bone cement[M] ∥Iulian Antoniac.Biologically Responsive Biomaterials for Tissue Engineering.New York:Springer, 2013: 173-199.
|
[9] |
Lv Shenghua, Liu Jingjing, Sun Ting, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation proce-ss[J]. Constr.Build.Mater., 2014,64:231-239.
|
[10] |
王春阳. 碳纤维在水泥基混凝土中的分散性研究[J]. 武汉理工大学学报, 2005,27(11):39-42.
|
[11] |
孙明清, 张晖, 李卓球, 等. CFRC机敏混凝土中碳纤维的分散性研究[J].混凝土与水泥制品, 2004(5):38-41.
|
[12] |
Han Baoguo, Zhang Liqing, Zhang Chenyu, et al. Reinforcement effect and mechanism of carbon fibers to mechanical and electric-ally conductive properties of cement-based materials[J]. Construc-tion & Building Materials, 2016,125:479-489.
|
[13] |
Carmona Jesús, Climent Miguel-ángel, Antón Carlos, et al.Shape effect of electrochemical chloride extraction in structural reinfor-ced concrete elements using a new cement-based anodic system[J]. Materials, 2015,8:2901-2917.
|
[14] |
Li Xueguang, Wei Wei, Qin Hao, et al. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement[J]. Journal of Physics & Chemistry of Solids, 2015,85:39-43.
|
[15] |
Wang Min, Yao Hao, Wang Rumin, et al. Chemically functionalized graphene oxide as the additive for cement-matrix composite with enhanced fluidity and toughness[J]. Constr.Build.Mater., 2017,150:150-156.
|
[16] |
Gong Kai, Pan Zhu, Korayem A H, et al. Reinforcing effects of grap-hene oxide on Portland cement paste[J]. J.Mater.Civil Eng., 2015,27(2):A4014010.
|
[17] |
Lu Zeyu, Li Xiangyu, Asad Hanif, et al. Early-age interaction me-chanism between the graphene oxide and cement hydrates[J]. Constr.Build.Mater., 2017,152:232-239.
|
[18] |
Sun Xiuxuan, Wu Qinglin, Zhang Jinlong, et al. Rheology,curing temperature and mechanical performance of oil well cement:Com-bined effect of cellulose nanofibers and graphene nano-platele-ts[J]. Materials & Design, 2017,114:92-101.
|
[19] |
Ra D I, Han K S. Used lithium ion rechargeable battery recycling using Etoile-Rebatt technology[J]. Journal of Power Sources, 2006,163(1):284-288.
|
[20] |
Michel Broussely, Graham Archdale. Li-ion batteries and portable power source prospects for the next 5-10 years[J]. Journal of Po-wer Sources, 2004,136(2):386-394.
|
[21] |
花蕾, 潘晓燕. 石墨烯水泥基复合材料早龄期电学及力学性能的研究[J]. 低温建筑技术, 2018,40(3):6-12.
|
[22] |
吕生华, 张佳, 朱琳琳, 等. 氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报, 2017,68(6):2585-2595.
|
[23] |
彭晖, 戈娅萍, 杨振天, 等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J].复合材料学报, 2018(8):2132-2139.
|
[24] |
Kim Jaemyung, Cote L J, Huang J X, et al. Two dimensional soft material:New faces of graphene oxide[J]. Accounts of Chemical Research, 2012,45(8):1356-1364.
|