Inorganic Chemicals Industry ›› 2023, Vol. 55 ›› Issue (10): 145-152.doi: 10.19964/j.issn.1006-4990.2022-0751
• Catalytic Materials • Previous Articles Next Articles
WANG Peng1(), ZHAO Shanshan1, LU Yanfei2, LI Shisong2, WANG Chunlei2, SHU Chang2(
), ZHANG Dongsheng1(
)
Received:
2022-12-22
Online:
2023-10-10
Published:
2023-10-16
Contact:
SHU Chang, ZHANG Dongsheng
E-mail:690169869@qq.com;potatopumier@163.com;zds1301@hebut.edu.cn
CLC Number:
WANG Peng, ZHAO Shanshan, LU Yanfei, LI Shisong, WANG Chunlei, SHU Chang, ZHANG Dongsheng. Study on preparation of copper-based materials and its catalytic performance for hydrogenation of dimethyl succinate[J]. Inorganic Chemicals Industry, 2023, 55(10): 145-152.
Table 4
Catalysts used in catalytic hydrogenation of DMS/DES/SA to produce BDO"
催化剂 | DMS/DES/SA 转化率/% | BDO选 择性/% | 反应 温度/℃ | 反应压 力/MPa | 反应 时间/h |
---|---|---|---|---|---|
0.3CuZnAl | 97.5(DMS) | 87.2 | 185 | 5 | 1 000 |
n(Cu)/n(Zn)=1:1[ | 99.0(DMS) | 64.0 | 220 | 5 | 8 |
Cu/ZrO2[ | 100(DES) | 10.0 | 220 | 7 | — |
CuO/ZnO[ | 100(DES) | 86.1 | 170 | 4 | — |
8%Cu-2%Pd/HPA[ | 100(SA) | 82.0 | 200 | 8 | 96 |
Re-Cu-MC[ | 100(SA) | <41.9 | 200 | 8 | 20 |
0.3Re-0.3Ru/MC[ | 100(SA) | 71.2 | 200 | 8 | 7 |
ReRu/C[ | 100(SA) | 70.0 | — | 8 | — |
Re-Pd/SiO2[n(Re)/ n(Pd)=8][ | 100(SA) | 89.0 | 140 | 8 | 96 |
1 | YIM H, HASELBECK R, NIU Wei,et al.Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol[J].Nature Chemical Biology,2011,7(7):445-452. |
2 | LIU Haolan, JIANG Yuanyuan, ZHAO Huaiyuan,et al.Preparation of highly dispersed Cu catalysts from hydrotalcite precursor for the dehydrogenation of 1,4-butanediol[J].Journal of Industrial and Engineering Chemistry,2021,102:251-259. |
3 | 刘响,廖启江,张敏卿.1,4-丁炔二醇加氢过程研究进展[J].化工进展,2017,36(8):2787-2797. |
LIU Xiang, LIAO Qijiang, ZHANG Minqing.Research progress of 1,4-butynediol hydrogenation process[J].Chemical Industry and Engineering Progress,2017,36(8):2787-2797. | |
4 | TAMURA M, NAKAGAWA Y, TOMISHIGE K.Recent developments of heterogeneous catalysts for hydrogenation of carboxylic acids to their corresponding alcohols[J].Asian Journal of Organic Chemistry,2020,9(2):126-143. |
5 | 黄佩佩.1,4-丁二醇的生产现状和发展[J].当代化工研究,2022(1):48-50. |
HUANG Peipei.Production status and development of 1,4-butanediol[J].Modern Chemical Research,2022(1):48-50. | |
6 | BURGARD A, BURK M J, OSTERHOUT R,et al.Development of a commercial scale process for production of 1,4-butanediol from sugar[J].Current Opinion in Biotechnology,2016,42:118-125. |
7 | 李庆远,王超,许世佩,等.PBS前体1,4-丁二醇合成的反应工艺和催化剂研究进展[J].化工进展,2022,41(11):5771-5782. |
LI Qingyuan, WANG Chao, XU Shipei,et al.Research progress on reaction process and catalysts for PBS precursor of 1,4-butanediol synthesis[J].Chemical Industry and Engineering Progress,2022,41(11):5771-5782. | |
8 | WU Mengying, SUNG L Y, LI H,et al.Combining CRISPR and CRISPRi systems for metabolic engineering of E.coli and 1,4-BDO biosynthesis[J].ACS Synthetic Biology,2017,6(12):2350-2361. |
9 | LEE Y, KIM Y T, KWON E E,et al.Biochar as a catalytic material for the production of 1,4-butanediol and tetrahydrofuran from furan[J].Environmental Research,2020,184:109325. |
10 | FORTE A, ZUCARO A, BASOSI R,et al.LCA of 1,4-butanediol produced via direct fermentation of sugars from wheat straw feedstock within a territorial biorefinery[J].Materials,2016,9(7):563. |
11 | GUO Hui, LIU Huan, JIN Yuhan,et al.Advances in research on the bio-production of 1,4-butanediol by the engineered microbes[J].Biochemical Engineering Journal,2022,185:108478. |
12 | SILVA R G C, FERREIRA T F, BORGES É R.Identification of potential technologies for 1,4-Butanediol production using prospecting methodology[J].Journal of Chemical Technology & Biotechnology,2020,95(12):3057-3070. |
13 | BRANDS D S, POELS E K, BLIEK A.Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J].Applied Catalysis A:General,1999,184(2):279-289. |
14 | ZHU Yulei, YANG Jun, DONG Genquan,et al.An environmentally benign route to γ-butyrolactone through the coupling of hydrogenation and dehydrogenation[J].Applied Catalysis B:Environmental,2005,57(3):183-190. |
15 | DAKHEL A A.Creation of room-temperature DMS carbon-incorporated ZnO[J].Journal of Optoelectronics and Advanced Materials,2021,23(1/2):58-62. |
16 | DAKHEL A A.Comparative study of the hydrogenation of Cu and TM(Mn,Fe,Ni)-codoped ZnO nanocomposite DMS[J].Journal of Superconductivity and Novel Magnetism,2015,28(7):2039-2045. |
17 | EL-HILO M, DAKHEL A A, YACOOB Z J.Magnetic interactions in Co2+ doped ZnO synthesised by co-precipitation method:Efficient effect of hydrogenation on the long-range ferromagnetic order[J].Journal of Magnetism and Magnetic Materials,2019,482:125-134. |
18 | KANG K H, HAN S J, LEE J W,et al.Effect of boron content on 1,4-butanediol production by hydrogenation of succinic acid over Re-Ru/BMC (boron-modified mesoporous carbon) catalysts[J].Applied Catalysis A:General,2016,524:206-213. |
19 | YAO Yaqi, WU Xiaoqian, GUTIÉRREZ O Y,et al.Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZn x @C catalysts[J].Applied Catalysis B:Environmental,2020,267:118698. |
20 | LIU Hanwen, HU Qi, FAN Guoli,et al.Surface synergistic effect in well-dispersed Cu/MgO catalysts for highly efficient vapor-phase hydrogenation of carbonyl compounds[J].Catalysis Science & Technology,2015,5(8):3960-3969. |
21 | ZUO Jianliang, CHEN Zhihang, WANG Furong,et al.Low-temperature selective catalytic reduction of NO x with NH3 over novel Mn-Zr mixed oxide catalysts[J].Industrial & Engineering Chemistry Research,2014,53(7):2647-2655. |
22 | 郜宪龙,莫文龙,马凤云,等.助剂对Ni-Al合金和Raney-Ni催化剂结构及1,4-丁烯二醇加氢性能的影响[J].无机化学学报,2020,36(5):958-968. |
GAO Xianlong, MO Wenlong, MA Fengyun,et al.Effect of promoter on the Ni-Al alloy & the corresponding Raney-Ni catalyst and hydrogenation performance of 1,4-butylenedioi[J].Chinese Journal of Inorganic Chemistry,2020,36(5):958-968. | |
23 | HU Qi, YANG Lan, FAN Guoli,et al.Hydrogenation of biomass-derived compounds containing a carbonyl group over a copper-based nanocatalyst:Insight into the origin and influence of surface oxygen vacancies[J].Journal of Catalysis,2016,340:184- 195. |
24 | 王振宇.高附加值手性醇的不对称合成研究[D].北京:北京化工大学,2017. |
WANG Zhenyu.Study on asymmerty of high value chiral alcohols[D].Beijing:Beijing University of Chemical Technology,2017. | |
25 | HONG U G, KIM J K, LEE J,et al.Conversion of succinic acid to 1,4-butanediol via dimethyl succinate over rhenium nano-catalyst supported on copper-containing mesoporous carbon[J].Journal of Nanoscience and Nanotechnology,2014,14(11):8867-8872. |
26 | HUANG Xiumin, MA Meng, MIAO Shu,et al.Hydrogenation of methyl acetate to ethanol over a highly stable Cu/SiO2 catalyst:Reaction mechanism and structural evolution[J].Applied Catalysis A:General,2017,531:79-88. |
27 | WANG Yue, LIAO Junyu, ZHANG Jian,et al.Hydrogenation of methyl acetate to ethanol by Cu/ZnO catalyst encapsulated in SBA-15[J].AIChE Journal,2017,63(7):2839-2849. |
28 | DI Xin, LI Chuang, LAFAYE G,et al.Influence of Re-M interactions in Re-M/C bimetallic catalysts prepared by a microwave-assisted thermolytic method on aqueous-phase hydrogenation of succinic acid[J].Catalysis Science & Technology,2017,7(22):5212-5223. |
29 | VARDON D R, SETTLE A E, VOROTNIKOV V,et al.Ru-Sn/AC for the aqueous-phase reduction of succinic acid to 1,4-butanediol under continuous process conditions[J].ACS Catalysis,2017,7(9):6207-6219. |
30 | KEELS J M, CHEN Xiao, KARAKALOS S,et al.Aqueous-phase hydrogenation of succinic acid using bimetallic Ir-Re/C catalysts prepared by strong electrostatic adsorption[J].ACS Catalysis,2018,8(7):6486-6494. |
31 | OHLINGER C, KRAUSHAAR-CZARNETZKI B.Improved processing stability in the hydrogenation of dimethyl maleate to γ-butyrolactone,1,4-butanediol and tetrahydrofuran[J].Chemical Engineering Science,2003,58(8):1453-1461. |
32 | STEIN J, KABASCI S.Hydrierung von diethylsuccinat zu γ-butyrolacton,1,4-butandiol und tetrahydrofuran[J].Chemie Ingenieur Technik,2016,88(5):600-606. |
33 | DING Guoqiang, ZHU Yulei, ZHENG Hongyan,et al.Study on the reaction pathway in the vapor-phase hydrogenation of bioma-ss-derived diethyl succinate over CuO/ZnO catalyst[J].Catalysis Communications,2010,11(14):1120-1124. |
34 | LE S D, NISHIMURA S.Highly selective synthesis of 1,4-butanediol via hydrogenation of succinic acid with supported Cu-Pd alloy nanoparticles[J].ACS Sustainable Chemistry & Engineering,2019,7(22):18483-18492. |
35 | KANG K H, HONG U G, BANG Yongju,et al.Hydrogenation of succinic acid to 1,4-butanediol over Re-Ru bimetallic catalysts supported on mesoporous carbon[J].Applied Catalysis A:General,2015,490:153-162. |
36 | DI Xin, LI Chuang, ZHANG Bingsen,et al.Role of Re and Ru in Re-Ru/C bimetallic catalysts for the aqueous hydrogenation of succinic acid[J].Industrial & Engineering Chemistry Research,2017,56(16):4672-4683. |
37 | TAKEDA Y, TAMURA M, NAKAGAWA Y,et al.Hydrogenation of dicarboxylic acids to diols over Re-Pd catalysts[J].Catalysis Science & Technology,2016,6(14):5668-5683. |
[1] | WANG Chao, SONG Guoliang, XIAO Han. Industrial application of THFS-2 sulfurized reforming prehydrogenation catalysts [J]. Inorganic Chemicals Industry, 2024, 56(5): 94-100. |
[2] | DI Lu, WANG Weiguo, CHEN Juexian, WU Chuanshu. Study on preparation of transition metal-supported Silicalite-1 zeolite catalyst and its catalytic performance for furfural hydrogenation [J]. Inorganic Chemicals Industry, 2024, 56(4): 125-132. |
[3] | ZHU Jinjian, YANG Xiaxia, MU Zhanpeng, SONG Guoliang, LI Zihan, LIU Wei, XU Yan, ZHANG Jingcheng. Effect of different additives on liquid phase selective hydrogenation performance of maleic anhydride over Ni/Al2O3 [J]. Inorganic Chemicals Industry, 2024, 56(4): 143-150. |
[4] | ZHAN Sijin, LIU Shike, LIU Fei, YAO Mengqin, CAO Jianxin. Study on preparation and catalytic performance of ZnO-CeO2 [J]. Inorganic Chemicals Industry, 2024, 56(3): 137-143. |
[5] | REN Qixia, YANG Kun, LIU Fei, YAO Mengqin, CAO Jianxin. Effect of promoter on physicochemical properties and catalytic performance of ZnO/ZrO2 [J]. Inorganic Chemicals Industry, 2024, 56(3): 144-154. |
[6] | YANG Kun, REN Qixia, DONG Yonggang, LIU Fei, YAO Mengqin, CAO Jianxin. Effect of calcination temperature on catalytic performance of ZnGaZrO x /SAPO-34 [J]. Inorganic Chemicals Industry, 2024, 56(2): 136-145. |
[7] | WANG Yansu, FENG Qing, LIU Guozhu, YU Haibin, SUN Yanmin, NAN Jun. Advances in encapsulated catalysts for propane dehydrogenation [J]. Inorganic Chemicals Industry, 2024, 56(11): 95-104. |
[8] | LIU Wei, XU Yan, CHEN Yongsheng, SUN Chunhui, ZHANG Jingcheng, ZHU Jinjian, LIU Yang. Effect of alkaline earth metals on performance of Cu/Al2O3 ester hydrogenation catalyst [J]. Inorganic Chemicals Industry, 2023, 55(9): 140-144. |
[9] | MA Zhiyuan, LÜ Dawei, WANG Hui, JIN Nannan, ZHU Jinjian, ZHANG Jingcheng. Industrial application of THDS-2/3 catalyst in capacity expansion of hydrofining plant [J]. Inorganic Chemicals Industry, 2023, 55(8): 140-144. |
[10] | WANG Yansu, LIU Guozhu, YU Haibin. Research progress of platinum-based propane dehydrogenation catalysts [J]. Inorganic Chemicals Industry, 2023, 55(7): 1-9. |
[11] | JIA Yuhong, HU Zhongpan, WANG Kunyuan, HAN Jingfeng, WEI Yingxu, LIU Zhongmin. Co anchored on silanol nests of S-1 zeolite for propane dehydrogenation to propylene [J]. Inorganic Chemicals Industry, 2023, 55(5): 121-127. |
[12] | LI Haitao,ZHAO Yinfeng. Nitriding SBA-15 loaded highly dispersed transition metals for efficient direct dehydrogenation of propane [J]. Inorganic Chemicals Industry, 2023, 55(2): 141-148. |
[13] | WANG Yansu, LIU Guozhu, YU Haibin. Research progress of non-precious metal catalysts for propane dehydrogenation [J]. Inorganic Chemicals Industry, 2023, 55(12): 1-11. |
[14] | LIU Zenghui, SONG Bingjie, CHEN He, SUN Peiyong, CHAI Wenzheng, ZHANG Shenghong, FU Songbao, YAO Zhilong. Effect of structure of copper-based catalyst on adsorption and diffusion of mixed solution of unsaturated aldehydes and fatty alcohol [J]. Inorganic Chemicals Industry, 2023, 55(12): 152-158. |
[15] | QIU Xiaokui, ZHANG Ruofan, WANG Xiaoyan, WANG Hailong, ZHANG Qixue, WAN Chao, XU Lixin. Research on bamboo shavings carbon supported ruthenium catalysts for hydrogen generation from photocatalytic hydrolysis of ammonia borane [J]. Inorganic Chemicals Industry, 2023, 55(10): 153-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297