Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (12): 43-48.doi: 10.19964/j.issn.1006-4990.2021-0557
• Inorganic Noval Materials—Carbon Resources Conversion and Utilization • Previous Articles Next Articles
ZHOU Wei1,2(),YU Haibin2,MA Xinbin1(
)
Received:
2021-09-13
Online:
2021-12-10
Published:
2021-12-16
Contact:
MA Xinbin
E-mail:362200922@163.com;xbma@tju.edu.cn
CLC Number:
ZHOU Wei,YU Haibin,MA Xinbin. Oxidative dehydrogenation of ethane with carbon dioxide to ethylene over Cr/SSZ-13 catalyst[J]. Inorganic Chemicals Industry, 2021, 53(12): 43-48.
Table 1
N2 physisorption data of Crx/SSZ-13-10 and Crx/SSZ-13-50 catalysts with different Cr loadings"
样品 | SBET/(m2·g-1) | Smicro/(m2·g-1) | Sexter/(m2·g-1) | Vpores/(cm3·g-1) | Vmicro/(cm3·g-1) | Vmeso/(cm3·g-1) |
---|---|---|---|---|---|---|
SSZ-13-10 | 654 | 613 | 41 | 0.33 | 0.24 | 0.09 |
Cr0.5/SSZ-13-10 | 642 | 601 | 40 | 0.33 | 0.24 | 0.09 |
Cr1.0/SSZ-13-10 | 623 | 583 | 41 | 0.32 | 0.23 | 0.09 |
Cr1.5/SSZ-13-10 | 601 | 560 | 41 | 0.30 | 0.22 | 0.08 |
Cr2.5/SSZ-13-10 | 564 | 525 | 39 | 0.28 | 0.21 | 0.07 |
SSZ-13-50 | 762 | 734 | 28 | 0.36 | 0.30 | 0.06 |
Cr1.0/SSZ-13-50 | 744 | 720 | 25 | 0.35 | 0.29 | 0.06 |
Cr1.5/SSZ-13-50 | 685 | 658 | 27 | 0.33 | 0.27 | 0.06 |
Cr2.0/SSZ-13-50 | 677 | 653 | 24 | 0.33 | 0.27 | 0.06 |
[1] | ROGG S, HESS C. CO2 as a soft oxidant for propane oxidative dehy- drogenation:A mechanistic study using operando UV Raman spec- troscopy[J]. Journal of CO2 Utilization, 2021, 50:101604-101611. |
[2] |
GAMBO Y, ADAMU S, ABDULRASHEED A A, et al. Catalyst design and tuning for oxidative dehydrogenation of propane-A review[J]. Applied Catalysis A:General, 2021, 609:117914-117942.
doi: 10.1016/j.apcata.2020.117914 |
[3] | CHEN D, HOLMEN A, SUI Z J, et al. Carbon mediated catalysis:A review on oxidative dehydrogenation[J]. Chinese Journal of Cataly- sis, 2014, 35(6):824-841. |
[4] |
ABDELBAKI Y, ARRIBA A, SOLSONA B, et al. The Nickel-sup- port interaction as determining factor of the selectivity to ethylene in the oxidative dehydrogenation of ethane over nickel oxide/alumi- na catalysts[J]. Applied Catalysis A:General, 2021, 623:118242-118254.
doi: 10.1016/j.apcata.2021.118242 |
[5] |
KHARLAMOVA T S, TIMOFEEV K L, SALAEV M A, et al. Mono- layer MgVOx/Al2O3 catalysts for propane oxidative dehydrogenation: Insights into a role of structural,redox,and acid-base properties in catalytic performance[J]. Applied Catalysis A:General, 2020, 598:117574-117585.
doi: 10.1016/j.apcata.2020.117574 |
[6] |
JIANG X, SHARMA L, FUNG V, et al. Oxidative dehydrogenation of propane to propylene with soft oxidants via heterogeneous catalysis[J]. ACS Catalysis, 2021, 11:2182-2234.
doi: 10.1021/acscatal.0c03999 |
[7] |
YU P, LIU Y L, DESHLAHRA P, et al. Detailed kinetic modeling of NOx-mediated oxidative dehydrogenation of propane[J]. Industrial & Engineering Chemistry Research, 2021, 60(37):13553-13561.
doi: 10.1021/acs.iecr.1c02635 |
[8] |
YAN H, ALAYOGLU S, WU W Q, et al. Identifying boron active si- tes for the oxidative dehydrogenation of propane[J]. ACS Catalysis, 2021, 11:9370-9376.
doi: 10.1021/acscatal.1c02168 |
[9] |
QI W, SU D S. Metal-free carbon catalysts for oxidative dehydro- genation reactions[J]. ACS Catalysis, 2014, 4:3212-3218.
doi: 10.1021/cs500723v |
[10] |
VENEGAS J M, MCDERMOTT W P, HERMANS I, Serendipity in catalysis research:Boron-based materials for alkane oxidative de- hydrogenation[J]. Accounts of Chemical Research 2018, 51:2556-2564.
doi: 10.1021/acs.accounts.8b00330 |
[11] | GOMEZ E, YAN B, KATTEL S, et al. Carbon dioxide reduction in tandem with light-alkane dehydrogenation[J]. Nature Reviews Che- mistry, 2019, 3(11):638-649. |
[12] |
AL-AWADI A S, AL-ZAHRANI S M, EL-TONI A M, et al. Dehy- drogenation of ethane to ethylene by CO2 over highly dispersed Cr on large-pore mesoporous silica catalysts[J]. Catalysts, 2020, 10(1):97-114.
doi: 10.3390/catal10010097 |
[13] |
AL-MAMOORI A, LAWSON S, ROWNAGHI A A, et al. Oxidative dehydrogenation of ethane to ethylene in an integrated CO2 capture- utilization process[J]. Applied Catalysis B:Environmental, 2020, 278:119329-119339.
doi: 10.1016/j.apcatb.2020.119329 |
[14] | ZHANG L, WANG Z Y, SONG J, et al. Facile synjournal of SiO2 su- pported GaN as an active catalyst for CO2 enhanced dehydrogena- tion of propane[J]. Journal of CO2 Utilization, 2020, 38:306-313. |
[15] |
BAEK J, YUN H J, YUN D, et al. Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO2:Insight into the nature of catalytically active chromium sites[J]. ACS Catalysis, 2012, 2:1893-1903.
doi: 10.1021/cs300198u |
[16] |
GAO Y G, JIE X Y, WANG C Z, et al. One-pot synjournal of Ca ox- ide-promoted Cr catalysts for the dehydrogenation of propane using CO2[J]. Industrial & Engineering Chemistry Research, 2020, 59:12645-12656.
doi: 10.1021/acs.iecr.9b06703 |
[17] | XUE X L, LANG W Z, YAN X, et al. Dispersed vanadium in three- dimensional dendritic mesoporous silica nanospheres:Active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2[J]. ACS Applied Materials & Interfaces, 2017, 9:15408-15423. |
[18] |
NUMAN M, EOM E, LI A, et al. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based cataly- sts[J]. ACS Catalysis, 2018, 8:3454-3468.
doi: 10.1021/acscatal.7b03805 |
[19] | LAWSON S, NEWPORT K A, AXTELL A, et al. Structured bifunc- tional catalysts for CO2 activation and oxidative dehydrogenation of propane[J]. ACS Sustainable Chemistry & Engineering, 2021(9):5716-5727. |
[20] |
WANG S B, ZHU Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation-A review[J]. Energy & Fuels, 2004, 18:1126-1139.
doi: 10.1021/ef0340716 |
[21] | 杜凯敏, 范杰. 丙烷氧化脱氢制丙烯研究进展[J]. 化工进展, 2019, 38(6):2697-2706. |
[22] | SHI X, JI S, WANG K. Oxidative dehydrogenation of ethane to et- hylene with carbon dioxide over Cr-Ce/SBA-15 catalysts[J]. Ca- talysis Letters, 2008, 125:331-339. |
[23] | MUKJERJEE D, PARK S-E, REDDY B M. CO2 as a soft oxidant for oxidative dehydrogenation reaction:An eco benign process for industry[J]. Journal of CO2 Utilization, 2016, 16:301-312. |
[24] | OTROSHCHENKO T P, RODEMERCK U, LINKE D, et al. Syner- gy effect between Zr and Cr active sites in binary CrZrOx or suppo- rted CrOx/LaZrOx:Consequences for catalyst activity,selectivity and durability in non-oxidative propane dehydrogenation[J]. Jo- urnal of Catalysis, 2017, 356:197-205. |
[25] |
MA F, CHEN S, WANG Y, et al. Characterization of redox and acid properties of mesoporous Cr-TiO2 and its efficient performance for oxidative dehydrogenation of propane[J]. Applied Catalysis A: General, 2012, 427-428:145-154.
doi: 10.1016/j.apcata.2012.03.043 |
[26] |
MIMURA N, TAKAHARA I, INABA M, et al. High-performance Cr/H-ZSM-5 catalysts for oxidative dehydrogenation of ethane to eethylene with CO2 as an oxidant[J]. Catalysis Communications, 2002, 3(6):257-262.
doi: 10.1016/S1566-7367(02)00117-6 |
[27] |
NAJARI S, SAEIDI S, CONCEPCION P, et al. Oxidative dehydro- genation of ethane:Catalytic and mechanistic aspects and future trends[J]. Chemical Society Reviews, 2021, 50:4564-4605.
doi: 10.1039/D0CS01518K |
[28] |
HU Z P, YANG D D, WANG Z, et al. State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2019, 40:1233-1254.
doi: 10.1016/S1872-2067(19)63360-7 |
[29] |
SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20):10613-10653.
doi: 10.1021/cr5002436 |
[30] |
HU Z P, WANG Z, YUAN Z Y, et al. Cr/Al2O3 catalysts with strong metal-support interactions for stable catalytic dehydrogenation of propane to propylene[J]. Molecular Catalysis, 2020, 493:111052-111060.
doi: 10.1016/j.mcat.2020.111052 |
[31] | 王雅琼, 陈昌平, 许文. 紫外可见光谱法测定Cr3+电化学氧化过程中的Cr2O72-[J]. 光谱学与光谱分析, 2003, 23(6):146-149. |
[32] |
AL-AWADI A S, EL-TONI A M, AL-ZAHRANI S M. Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with car- bon dioxide[J]. Applied Catalysis A:General, 2019, 584:117114-117124.
doi: 10.1016/j.apcata.2019.117114 |
[1] | ZHANG Feigang, LIU Zhongli. Study on application of CuO/g-C3N4 composites in organic dye degradation and supercapacitors [J]. Inorganic Chemicals Industry, 2025, 57(1): 129-136. |
[2] | ZOU Liao, MA Xiaolin, LI Xiaobao, YE Judi. Study on preparation of Lignin/LDH and improvement of mechanical properties of polyurethane [J]. Inorganic Chemicals Industry, 2025, 57(1): 64-70. |
[3] | WANG Ping, XU Rongsheng, SUN Dong, SHI Xiaohong, XU Wei, LI Mei. Study on preparation of nitrogen-doped biochar and its adsorption properties for methylene blue [J]. Inorganic Chemicals Industry, 2024, 56(9): 117-127. |
[4] | WANG Ting, ZHANG Wenwen, MAO Qing, LÜ Li, LIU Changzhen. Research progress of catalytic system and materials for electrocatalytic reduction of carbon dioxide to ethanol [J]. Inorganic Chemicals Industry, 2024, 56(7): 1-10. |
[5] | ZHANG Bangcheng, WANG Li. Preparation and adsorption properties of waste polyester⁃based activated carbon activated by ZnCl2 [J]. Inorganic Chemicals Industry, 2024, 56(7): 126-134. |
[6] | LIU Min, HUANG Xiu, ZHANG Liyuan. Research progress of S-type heterojunction photocatalysts [J]. Inorganic Chemicals Industry, 2024, 56(7): 18-27. |
[7] | SHEN Haiyan, LI Fangqin, REN Jianxing, WU Jiang, GUAN Zhenzhen, PAN Weiguo. Research progress on chemical absorption method for capturing carbon dioxide [J]. Inorganic Chemicals Industry, 2024, 56(5): 11-19. |
[8] | ZHANG Yu, ZHAO Guiyan, TIAN Yongchang, QIU Xiaokui, SUN Jiali, XU Lixin. Reaction kinetics of ethylenediamine hydrochloride with calcium hydroxide [J]. Inorganic Chemicals Industry, 2024, 56(5): 64-69. |
[9] | ZU Minghua, CAO Yapeng, LI Heng, LIU Yumin, ZHANG Zhikun. Study on Cr3+ detection based silver nanoparticles modified with 4-mercaptobenzoic acid and polyethyleneimine [J]. Inorganic Chemicals Industry, 2024, 56(4): 78-84. |
[10] | LI Qiaoyun, HUANG Xiuxing, WEI Wenye, CHEN Zhen. Study on adsorption of methylene blue by activated carbon with acid/alkali synergistically modified fly ash [J]. Inorganic Chemicals Industry, 2024, 56(3): 131-136. |
[11] | HUANG Jianan, LU Xiaoyu, WANG Mitang. Effect of Ba-La co-doping on degradation of methylene blue dye by TaON [J]. Inorganic Chemicals Industry, 2024, 56(2): 146-151. |
[12] | LIU Fujie, HE Qian, SU Long, JIANG Caiyun. Adsorption properties of methylene blue by surface functionalized magnetic biochar with sodium alginate [J]. Inorganic Chemicals Industry, 2024, 56(2): 65-73. |
[13] | CUI Xiangdong, LIU Sile. Study on photoelectric performance analysis of g-C3N5 nanorods and removal of Cr(Ⅵ) and methylene blue [J]. Inorganic Chemicals Industry, 2024, 56(10): 159-168. |
[14] | ZHANG Lijie, LI Degang, HAN Wenyuan, XU Huijun, ZHANG Weimin, YU Chen. Preparation of phosphorus-doped carbon quantum dots and activation of peroxymonosulfate for degradation of methylene blue [J]. Inorganic Chemicals Industry, 2024, 56(1): 126-133. |
[15] | HU Mingliang, ZHOU Wei, LI Bin, LAI Xiaoling. Research progress of synergistic effect catalytic reforming of methane and carbon dioxide [J]. Inorganic Chemicals Industry, 2024, 56(1): 23-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297