1 |
KAR S, RAUCH M, LEITUS G,et al.Highly efficient additive-free dehydrogenation of neat formic acid[J].Nature Catalysis,2021,4:193-201.
|
2 |
李锦宽,杨德伟,李豪博,等.光催化水解制氢反应器温度场的数值分析[J].辽宁石油化工大学学报,2019,39(1):1-9.
|
|
LI Jinkuan, YANG Dewei, LI Haobo,et al.Numerical analysis of temperature field of photocatalytic hydrolysis hydrogen production reactor[J].Journal of Liaoning Shihua University,2019,39(1):1-9.
|
3 |
邱小魁,张若凡,王小燕,等.竹茹丝炭负载钌催化剂光催化氨硼烷水解产氢研究[J].无机盐工业,2023,55(10):153-158.
|
|
QIU Xiaokui, ZHANG Ruofan, WANG Xiaoyan,et al.Research on bamboo shavings carbon supported ruthenium catalysts for hydrogen generation from photocatalytic hydrolysis of ammonia bora-ne[J].Inorganic Chemicals Industry,2023,55(10):153-158.
|
4 |
LIU Mingxu, XU Yuankang, MENG Yu,et al.Heterogeneous catalysis for carbon dioxide mediated hydrogen storage technology based on formic acid[J].Advanced Energy Materials,2022,12(31):2200817.
|
5 |
ZHONG Heng, IGUCHI M, CHATTERJEE M,et al.Formic acid-based liquid organic hydrogen carrier system with heterogeneous catalysts[J].Advanced Sustainable Systems,2018,2(2):1700161.
|
6 |
ZHANG Xiaoyu, SHANG Ningzhao, ZHOU Xin,et al.AgPd-MnO x supported on carbon nanospheres:An efficient catalyst for dehydrogenation of formic acid[J].New Journal of Chemistry,2017, 41(9):3443-3449.
|
7 |
AKBAYRAK S, TONBUL Y, ÖZKAR S.Nanoceria supported palladium(0) nanoparticles:Superb catalyst in dehydrogenation of formic acid at room temperature[J].Applied Catalysis B:Environmental,2017,206:384-392.
|
8 |
SUN Qiming, CHEN B W J, WANG Ning,et al.Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation[J].Angewandte Chemie,2020,59(45):20183-20191.
|
9 |
WU Chao, IRSHAD F, LUO Maowei,et al.Ruthenium complexes immobilized on an azolium based metal organic framework for highly efficient conversion of CO2 into formic acid[J].ChemCatChem,2019,11(4):1256-1263.
|
10 |
SAPTAL V B, BHANAGE B M.Current advances in heterogeneous catalysts for the synthesis of cyclic carbonates from carbon dioxide[J].Current Opinion in Green and Sustainable Chemistry,2017,3:1-10.
|
11 |
MOHR Y, ALVES-FAVARO M, RAJAPAKSHA R,et al.Heterogenization of a molecular Ni catalyst within a porous macroligand for the direct C—H arylation of heteroarenes[J].ACS Catalysis,2021,11(6):3507-3515.
|
12 |
LIU Huimin, WEI Li, LIU Fei,et al.Homogeneous,heterogeneous,and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions[J].ACS Catalysis,2019,9(6):5245-5267.
|
13 |
DEBECKER D P, SMEETS V, VAN DER VERREN M,et al.Hybrid chemoenzymatic heterogeneous catalysts[J].Current Opinion in Green and Sustainable Chemistry,2021,28:100437.
|
14 |
LI Zhangpeng, XU Qiang.Metal-nanoparticle-catalyzed hydrogen generation from formic acid[J].Accounts of Chemical Research,2017,50(6):1449-1458.
|
15 |
SOLYMOSI F,KOÓS, LILIOM N,et al.Production of CO-free H2 from formic acid.A comparative study of the catalytic behavior of Pt metals on a carbon support[J].Journal of Catalysis,2011,279(1):213-219.
|
16 |
WILLIAMS R, CRANDALL R S, BLOOM A.Use of carbon dioxide in energy storage[J].Applied Physics Letters,1978,33(5):381-383.
|
17 |
YAO Fang, LI Xiao, WAN Chao,et al.Highly efficient hydrogen release from formic acid using a graphitic carbon nitride-supported AgPd nanoparticle catalyst[J].Applied Surface Science,2017,426:605-611.
|
18 |
ARAFAT Y, AZHAR M R,ZHONG,Yijiu,et al.Advances in Zeolite Imidazolate Frameworks(ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc-Air Batteries[J].Advanced Energy Materials,2021,11(26):2100514.
|
19 |
李想,张艳梅,张静,等.UiO-66-NH2负载Pd催化剂的合成、表征及其催化反应[J].辽宁石油化工大学学报,2017,37(1):8-13.
|
|
LI Xiang, ZHANG Yanmei, ZHANG Jing,et al.Synthesis,characterization and catalytic reaction of UiO-66-NH2 supported Pd catalyst[J].Journal of Liaoning Shihua University,2017,37(1):8-13.
|
20 |
YAO Mengqin, YE Yuling, CHEN Honglin,et al.Porous carbon supported Pd as catalysts for boosting formic acid dehydrogenation[J].International Journal of Hydrogen Energy,2020,45(35):17398-17409.
|