Inorganic Chemicals Industry ›› 2023, Vol. 55 ›› Issue (3): 10-20.doi: 10.19964/j.issn.1006-4990.2022-0187
• Reviews and Special Topics • Previous Articles Next Articles
LI Liangrong1(), YANG Xiaozhe1, CHEN Chuxin1, LIU Yan1, ZHANG Mengling2, DING Yonghong1(
)
Received:
2022-04-28
Online:
2023-03-10
Published:
2023-03-17
Contact:
DING Yonghong
E-mail:ncurong@163.com;yonghong71@163.com
CLC Number:
LI Liangrong, YANG Xiaozhe, CHEN Chuxin, LIU Yan, ZHANG Mengling, DING Yonghong. Research progress of photocatalytic water splitting of semiconductor core-shell materials for hydrogen production[J]. Inorganic Chemicals Industry, 2023, 55(3): 10-20.
Table 1
Photocatalytic performance analysis table of semiconductor core-shell materials"
类型 | 种类 | 吸收边/ nm | 优点 | 产氢速率/ (μmol·g-1·h-1) |
---|---|---|---|---|
氧化物核壳材料[ | Cr2O3/C@TiO2 | 520 | 禁带宽度窄,对可见光响应更敏感;比表面积大,制氢活性位点多 | 446.00 |
GNR@TiO2 | 750 | 31.00 | ||
ZnO@ZnS | 390 | 126.18 | ||
WO3@ZnIn2S4 | 500 | 3 900.00 | ||
MoS2/SrTiO3@g-C3N4 | 450 | 1 647.41 | ||
氮氧化物核壳材料[ | Rh2O3/Ta2O5@TaON | 550 | 有效抑制光生载流子复合,延长光生电荷使用寿命 | 39.41 |
LaKNaTaO5@LaTaON2 | 620 | ~106.67 | ||
氮化物核壳材料[ | Ta3N5@ZnIn2S4 | 572 | 不易光腐蚀,光稳定性强可循环利用,电荷传输性能高,光生电荷分离快 | 834.86 |
Cu2O@g-C3N4 | 470 530 | 265 | ||
硫化物核壳材料[ | WS2/CdS@ZCS | 535 | 捕获和利用光能力强,不易光腐蚀,稳定性强,光催化产氢效率高 | 34 860.00 |
ZnS@NiO | 370 | 162 100.00 | ||
ZnSnO3@ZnIn2S4 | 500 | 16 340.18 |
1 | 李建林,梁忠豪,李光辉,等.太阳能制氢关键技术研究[J].太阳能学报,2022,43(3):2-11. |
LI Jianlin, LIANG Zhonghao, LI Guanghui,et al.Analysis of key technologies for solar hydrogen production[J].Acta Energiae Solaris Sinica,2022,43(3):2-11. | |
2 | 王惠娟,王春玉,张琼.二维层状纳米片材料制备及在电解水中应用的研究进展[J].无机盐工业,2021,53(11):25-29, 41. |
WANG Huijuan, WANG Chunyu, ZHANG Qiong.Research progress on the preparation of two-dimensional layered nanosheet materials and its application in electrolyzed water[J].Inorganic Che-micals Industry,2021,53(11):25-29,41. | |
3 | 李亮荣,付兵,刘艳,等.生物质衍生物重整制氢研究进展[J].无机盐工业,2021,53(9):12-17. |
LI Liangrong, FU Bing, LIU Yan,et al.Research progress of hydrogen production by reforming biomass-derived compounds[J].Inorganic Chemicals Industry,2021,53(9):12-17. | |
4 | 完颜永劲.半导体-金属异质结构提高光催化有机合成性质研究[D].厦门:厦门大学,2018. |
WANYAN Yongjin.Constructing metal-semiconductor heterojunction-based catalysts to promote photocatalytic organic syntheses[D].Xiamen:Xiamen University,2018. | |
5 | 丁宁.以ZnIn2S4及C3N4为主的异质结构光催化剂的构建与性质研究[D].北京:中国科学院大学(中国科学院物理研究所),2018. |
DING Ning.The constructing and characteristic study of heterostructure photocatalyst based on ZnIn2S4 and C3N4 [D].Beijing:Institute of Physics,Chinese Academy of Sciences,2018. | |
6 | NIU Bo, XU Zhenming.A stable Ta3N5@PANI core-shell photocatalyst:Shell thickness effect,high-efficient photocatalytic performance and enhanced mechanism[J].Journal of Catalysis,2019,371:175-184. |
7 | RAVI P, NAVAKOTESWARA RAO V, Shankar M V,et al.CuO@NiO core-shell nanoparticles decorated anatase TiO2 nanospheres for enhanced photocatalytic hydrogen production[J].International Journal of Hydrogen Energy,2020,45(13):7517-7529. |
8 | NAVAKOTESWARA RAO V, RAVI P, SATHISH M,et al.Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production:Recent advances,properties and technology challen-ges[J].Journal of Hazardous Materials,2021,415.Doi:10.1016/j.jhazmat.2021.125588. |
9 | 王健.ZnO纳米材料及核壳结构的制备和光催化性能研究[D].北京:中国科学院研究生院(长春光学精密机械与物理研究所),2016. |
WANG Jian.Synthesis and photocatalytic properties research of ZnO nanomaterials and core-shell structure[D].Beijing:Institute of Physics,Chinese Academy of Sciences,2016. | |
10 | 郭思瑶.新型光催化材料的形貌调控及其光解水制氢性能研究[D].武汉:华中科技大学,2014. |
GUO Siyao.Study on the morphology control of novel photocatalyst and their photocatalytic hydrogen production[D].Wuhan:Huazhong University of Science and Technology,2014. | |
11 | SCHNEIDER J J.Magnetic core/shell and quantum-confined semi-conductor nanoparticles via Chimie douce organometallic synthesis[J].Advanced Materials,2001,13(7):529-533. |
12 | 陈彩选,黄浪欢,刘应亮.核壳结构TiO2光催化剂的制备和性能[J].功能材料,2006,37(9):1358-1361. |
CHEN Caixuan, HUANG Langhuan, LIU Yingliang.The preparation,properties of core-shell structure titania composite nanoparticles[J].Journal of Functional Materials,2006,37(9):1358-1361. | |
13 | 李雷,李彦兴,姚瑶,等.核壳结构纳米材料的创制及在催化化学中的应用[J].化学进展,2013,25(10):1681-1690. |
LI Lei, LI Yanxing, YAO Yao,et al.Progress and prospective in fabrication and application of core-shell structured nanomaterials in catalytic chemistry[J].Progress in Chemistry,2013,25(10):1681-1690. | |
14 | MADHUMITHA A, PREETHI V, KANMANI S.Photocatalytic hydrogen production using TiO2 coated iron-oxide core shell particles[J].International Journal of Hydrogen Energy,2018,43(8):3946-3956. |
15 | 郭丽君,李瑞,刘建新,等.半导体光催化分解水的析氢效率研究[J].化学进展,2020,32(1):46-54. |
GUO Lijun, LI Rui, LIU Jianxin,et al.Study on hydrogen evolution efficiency of semiconductor photocatalysts for solar water splitting[J].Progress in Chemistry,2020,32(1):46-54. | |
16 | FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38. |
17 | CHAKRABORTY M, ROY D, BISWAS A,et al.Structural,optical and photo-electrochemical properties of hydrothermally grown ZnO nanorods arrays covered with α-Fe2O3 nanoparticles[J].RSC Advances,2016,6(79):75063-75072. |
18 | WANG Sheng, ZHU Bicheng, LIU Mingjin,et al.Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J].Applied Catalysis B:Environmental,2019,243:19-26. |
19 | CHEN Yang, MAO Guobing, TANG Yawen,et al.Synthesis of core-shell nanostructured Cr2O3/C@TiO2 for photocatalytic hydrogen production[J].Chinese Journal of Catalysis,2021,42(1):225-234. |
20 | 刘兵,宫辉力,刘锐,等.二氧化钛包裹金纳米棒核壳材料的制备及其光解水制氢[J].应用化学,2019,36(8):939-948. |
LIU Bing, GONG Huili, LIU Rui,et al.Synthesis of TiO2 coated gold nanorod with core-shell structure and its photocatalytic hydrogen evolution[J].Chinese Journal of Applied Chemistry,2019,36(8):939-948. | |
21 | 余岩.基于钛基半导体的异质结光催化制氢[D].杭州:浙江工业大学,2019. |
YU Yan.Heterostructure based on titanium-based semiconductor for hydrogen generation[D].Hangzhou:Zhejiang University of Technology,2019. | |
22 | DANESHVAR N, SALARI D, KHATAEE A R.Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J].Journal of Photochemistry and Photobiology A:Chemistry,2004,162(2/3):317-322. |
23 | HE Shan, ZHANG Shitong, LU Jun,et al.Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate[J].Chemical Communications,2011,47(38):10797-10799. |
24 | 冯彩丽,孙建兴,段军红.三角和六角对称ZnO分支纳米结构及其光学特性研究[J].南昌航空大学学报:自然科学版,2015,29(2):51-56. |
FENG Caili, SUN Jianxing, DUAN Junhong.Research on optical properties of triangular and hexagonal symmetry ZnO nanostructures[J].Journal of Nanchang Hangkong University:Natural Sciences,2015,29(2):51-56. | |
25 | SON N,DO J Y, KANG M.Characterization of core@shell-structured ZnO@Sb2S3 particles for effective hydrogen production from water photo spitting[J].Ceramics International,2017,43(14):11250-11259. |
26 | YANG Xinying, LIU Haixia, LI Tianduo,et al.Preparation of flower-like ZnO@ZnS core-shell structure enhances photocatalytic hydrogen production[J].International Journal of Hydrogen Energy,2020,45(51):26967-26978. |
27 | 李燕瑞.基于半导体异质结构的光催化剂设计、合成及性质研究[D].合肥:中国科学技术大学,2017. |
LI Yanrui.Design,synthesis and properties of photocatalysts based on semiconductor heterostructures[D].Hefei:University of Science and Technology of China,2017. | |
28 | YE Lin, WEN Zhenhai.ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation[J].International Journal of Hydrogen Energy,2019,44(7):3751-3759. |
29 | Wei OU, PAN Jiaqi, LIU Yanyan,et al.Two-dimensional ultrathin MoS2-modified black Ti3+-TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production[J].Journal of Energy Chemistry,2020,43:188-194. |
30 | WANG Meng, LIU Hongxia, MA Jiantai,et al.The activity enhancement of photocatalytic water splitting by F- pre-occupation on Pt(100) and Pt(111) co-catalyst facets[J].Applied Catalysis B:Environmental,2020,266.Doi:10.1016/j.apcatb.2020.118647. |
31 | MAHZOON S, HAGHIGHI M, NOWEE S M.Sonoprecipitation fabrication of enhanced electron transfer Cu(OH)2/g-C3N4 nanophotocatalyst with promoted H2-production activity under visible light irradiation[J].Renewable Energy,2020,150:91-100. |
32 | ZHANG Wei, ZHANG Hongwen, XU Jianzhong,et al.3D flower-like heterostructured TiO2@Ni(OH)2 microspheres for solar photocatalytic hydrogen production[J].Chinese Journal of Catalysis,2019,40(3):320-325. |
33 | PAN Jiaqi, LIU Yanyan,Wei OU,et al.The photocatalytic hydrogen evolution enhancement of the MoS2 lamellas modified g-C3N4/SrTiO3 core-shell heterojunction[J].Renewable Energy,2020,161:340-349. |
34 | 王鑫,薛冬峰.定向转化策略创制氮氧化物光催化剂[J].无机盐工业,2022,54(3):1-6. |
WANG Xin, XUE Dongfeng.Preparation of oxynitrides photocatalysts by the oriented transformation strategy[J].Inorganic Chemicals Industry,2022,54(3):1-6. | |
35 | XIAO Mu, WANG Songcan, THAWEESAK Supphasin,et al.Tantalum(oxy)nitride:Narrow bandgap photocatalysts for solar hydrogen generation[J].Engineering,2017,3(3):365-378. |
36 | 张微.Rh修饰的核壳异质结构氮(氧)化钽光催化析氢材料研究[D].哈尔滨:哈尔滨师范大学,2018. |
ZHANG Wei.Study on Rh-modified core-shell heterostructure tantalum nitride for photocatalytic hydrogen evolution[D].Harbin:Harbin Normal University,2018. | |
37 | WANG Xin, HISATOMI T, WANG Zheng,et al.Core-shell-structured LaTaON2 transformed from LaKNaTaO5 plates for enhanc-ed photocatalytic H2 evolution[J].Angewandte Chemie,2019,58(31):10666-10670. |
38 | PENG Zhiyuan, JIANG Yinhua, XIAO Yan,et al.CdIn2S4 surface-decorated Ta3N5 core-shell heterostructure for improved spatial charge transfer:In-situ growth,synergistic effect and efficient dual-functional photocatalytic performance[J].Applied Surface Science,2019,487:1084-1095. |
39 | XIAO Yan, ZHANG Wenli, XING Qingzeng,et al.Eco-friendly synthesis of core/shell ZnIn2S4/Ta3N5 heterojunction for strengthened dual-functional photocatalytic performance[J].Internatio-nal Journal of Hydrogen Energy,2020,45(55):30341-30356. |
40 | 齐跃红.g-C3N4基复合光催化剂的制备及其活性研究[D].唐山:华北理工大学,2016. |
QI Yuehong.The preparation and photocatalytic activity of g-C3N4 composition materials[D].Tangshan:North China University of Science and Technology,2016. | |
41 | SHEN Rongchen, HE Kelin, ZHANG Aiping,et al.In-situ construction of metallic Ni3C@Ni core-shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production[J].Applied Catalysis B:Environmental,2021,291.Doi:10.1016/j.apcatb.2021.120104. |
42 | LIU Li, QI Yuehong, HU Jinshan,et al.Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra[J].Applied Surface Science,2015,351:1146-1154. |
43 | LIAN Zhongqin, LIU Yichen, LIU Hong,et al.Fabrication of CdS@1T-MoS2 core-shell nanostructure for enhanced visible-light-driven photocatalytic H2 evolution from water splitting[J].Journal of the Taiwan Institute of Chemical Engineers,2019,105:57-64. |
44 | FANG Xueyou, CUI Lifeng, PU Tingting,et al.Core-shell CdS@MnS nanorods as highly efficient photocatalysts for visible light driven hydrogen evolution[J].Applied Surface Science,2018,457:863-869. |
45 | WANG Panhong, PAN Jiaqi, YU Qi,et al.The enhanced photocatalytic hydrogen production of the non-noble metal co-catalyst Mo2C/CdS hollow core-shell composite with CdMoO4 transition layer[J].Applied Surface Science,2020,508.Doi:10.1016/j.apsusc.2019.145203. |
46 | ZHOU Xiaopeng, ZHANG Ning, YIN Linxin.Few-layered WS2 nanosheets onto 1D CdS@ZnCdS as efficient visible-light photocatalyst for hydrogen evolution[J].Ceramics International,2020,46(16):26100-26108. |
47 | 朱乔虹,邢明阳,张金龙.光催化分解水制氢中硫化物空心结构的研究进展[J].化工进展,2021,40(9):4774-4781. |
ZHU Qiaohong, XING Mingyang, ZHANG Jinlong.Progress of hollow-structured-based sulfides in photocatalytic water splitting for hydrogen production[J].Chemical Industry and Engineering Progress,2021,40(9):4774-4781. | |
48 | NAVAKOTESWARA RAO V, RAVI P, SATHISH M,et al.Monodispersed core/shell nanospheres of ZnS/NiO with enhanced H2 generation and quantum efficiency at versatile photocatalytic conditions[J].Journal of Hazardous Materials,2021,413.Doi:10.1016/j.jhazmat2021.125359. |
49 | LI Songsong, DAI Dongsheng, GE Lei,et al.Synthesis of layer-like Ni(OH)2 decorated ZnIn2S4 sub-microspheres with enhanced visible-light photocatalytic hydrogen production activity[J].Dalton Transactions,2017,46(32):10620-10629. |
50 | GUO Feng, HUANG Xiliu, CHEN Zhihao,et al.Formation of unique hollow ZnSnO3@ZnIn2S4 core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production[J].Journal of Colloid and Interface Science,2021,602:889-897. |
[1] | ZHANG Bao, QUAN Kaidong, WANG Yongfeng, HAN Fei, SHI Aiwen, LIU Xin, WANG Xiaomin. Study on fabrication of nanoflower-like Fe y -NiCoS x @NF catalysts and their application in hydrogen evolution and oxygen evolution during seawater electrolysis [J]. Inorganic Chemicals Industry, 2025, 57(2): 130-137. |
[2] | LIU Qingcui, LI Yunqing, PANG Ruiqi, TIAN Yaping, CHEN Yiying, LI Fang, LI Qiming. Preparation of Zn/Co-ZIF derived porous carbon supported Pd as catalyst and its application to formic acid dehydrogenation [J]. Inorganic Chemicals Industry, 2024, 56(6): 147-152. |
[3] | LEI Xinyu, SUN Henghui, YUAN Xinqiang, ZHANG Wei, JIANG Peng, ZHANG Lizhai. Study on preparation of core-shell structure VO2(M)@SiO2 by silica sol-gel coating [J]. Inorganic Chemicals Industry, 2024, 56(6): 46-54. |
[4] | LI Jiexuan, JIN Huiming. Study on preparation of Co-P-B/ZIF-67 catalyst and catalyzing hydrogen production from sodium borohydride hydrolysis [J]. Inorganic Chemicals Industry, 2024, 56(12): 150-158. |
[5] | ZHANG Lingfeng, FAN Yajuan, MAO Chenchen, WU Shiguo, GU Hongxia. Research progress of cocatalyst of nicke-based catalyst system for hydrogen production from ammonia decomposition [J]. Inorganic Chemicals Industry, 2023, 55(3): 21-27. |
[6] | LI Zhiyong,YU Qian,HU Jiang,RONG Mei,SHANG Xin,ZHANG Yifan. Economic analysis and research on nuclear hydrogen production technology based on thermochemical cycle [J]. Inorganic Chemicals Industry, 2022, 54(9): 21-27. |
[7] | YANG Shuang,ZHAO Siqin,YANG Huiying. Research progress on photocatalysis by bismuth?based semiconductor composite TiO2 [J]. Inorganic Chemicals Industry, 2022, 54(6): 38-45. |
[8] | CHEN Jianjun,QIAO Yan,LIU Zixian,PENG Huanhuan,SONG Jialin,GAO Yan,LI Yongyu. Preparation of Au-supported porous g-C3N4 nanosheets for photocatalytic H2 evolution performance under visible-light [J]. Inorganic Chemicals Industry, 2022, 54(3): 132-136. |
[9] | WANG Xin,XUE Dongfeng. Preparation of oxynitrides photocatalysts by the oriented transformation strategy [J]. Inorganic Chemicals Industry, 2022, 54(3): 1-6. |
[10] | ZHENG Yangzi,JIN Mingshang. Strategy to improve catalytic performance of Pt-based core-shell catalysts for fuel cells [J]. Inorganic Chemicals Industry, 2022, 54(11): 1-7. |
[11] | WANG Xiaohuan,LI Shenghao,SHI Zhiming,WANG Jun,XINBA Yaer,LIU Liang. Research status of FeTiO3 materials [J]. Inorganic Chemicals Industry, 2022, 54(1): 12-17. |
[12] | Li Liangrong,Fu Bing,Liu Yan,Sun Wuchen. Research progress of hydrogen production by reforming biomass-derived compounds [J]. Inorganic Chemicals Industry, 2021, 53(9): 12-17. |
[13] | ZHANG Jingyi,HARI Bala,ZHANG Zhanying. Research progress on metal oxide semiconductor based triethylamine gas sensors [J]. Inorganic Chemicals Industry, 2021, 53(12): 67-73. |
[14] | Feng Fei,Li Shuwen,Wang Tielin,Wang Weiguo,Wang Cunwen. Synthesis and photocatalytic performance of sheet-like Bi/BiVO4 composite catalyst [J]. Inorganic Chemicals Industry, 2021, 53(1): 107-112. |
[15] | Xu Linchong,Yuan Aiqun,Wu Shengfu,Huang Zengwei,Bai Lijuan,Wei Dongping. Preparation process of core-shell structure TiO2@SiO2 optimized by response surface experiment [J]. Inorganic Chemicals Industry, 2020, 52(10): 77-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297