Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (9): 12-17.doi: 10.19964/j.issn.1006-4990.2020-0553
• Reviews and Special Topics • Previous Articles Next Articles
Li Liangrong(),Fu Bing,Liu Yan,Sun Wuchen(
)
Received:
2020-10-15
Online:
2021-09-10
Published:
2021-09-08
Contact:
Sun Wuchen
E-mail:ncurong@163.com;sunwuchen88@163.com
CLC Number:
Li Liangrong,Fu Bing,Liu Yan,Sun Wuchen. Research progress of hydrogen production by reforming biomass-derived compounds[J]. Inorganic Chemicals Industry, 2021, 53(9): 12-17.
[1] | 孙海杰, 陈凌霞, 张玉凤, 等. 钴-硼/二氧化锆催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业, 2019, 51(3):72-76. |
[2] | 孙海杰, 陈志浩, 陈凌霞, 等. 自搅拌下CoB/SiO2催化剂催化硼氢化钠水解制氢研究[J]. 无机盐工业, 2020, 52(3):101-106. |
[3] | 李婉晴. 乙二醇水相重整制氢催化剂制备及反应特性研究[D]. 天津:天津大学, 2016. |
[4] | 杨浩. 乙酸自热重整制氢的锌系镍基催化剂的研究[D]. 四川:成都理工大学, 2018. |
[5] | 江涛, 陈诗诗, 曹发海. 生物质多元醇水相重整制氢研究进展[J]. 化工进展, 2012, 31(5):1010-1017. |
[6] | 杨淑倩, 贺建平, 张娜, 等. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报, 2018, 46(2):179-188. |
[7] | 杨淑倩, 张娜, 贺建平, 等. Ce的浸渍顺序对Cu/Zn-Al水滑石衍生催化剂用于甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报, 2018, 46(4):479-488. |
[8] |
Liu Di, Men Yong, Wang Jinguo, et al. Highly active and durable Pt/In2O3/Al2O3 catalysts in methanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41(47):21990-21999.
doi: 10.1016/j.ijhydene.2016.08.184 |
[9] |
Nielsen M, Alberico E, Baumann W, et al. Low-temperature aque-ous-phase methanol dehydrogenation to hydrogen and carbon dio-xide[J]. Nature, 2013, 495:85-89.
doi: 10.1038/nature11891 |
[10] |
Lin Lili, Zhou Wu, Gao Rui, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544:80-83.
doi: 10.1038/nature21672 |
[11] | 郭芳林. 反应与吸附耦合的乙醇水蒸气重整制氢[D]. 北京:北京化工大学, 2008. |
[12] | 杨欢, 何素芳, 王云珠, 等. Ni-CaO-La2O3催化剂在乙醇水蒸气重整制氢中的应用[J]. 石油化工, 2020, 49(2):107-112. |
[13] | 李亮荣, 丁永红, 王飞, 等. 乙醇水蒸气重整制氢双金属催化剂Ni-Co/La2O2CO3的研究[J]. 应用化工, 2013, 42(5):866-869. |
[14] |
Zhang Xiaosong, Jin Hongguang. Thermodynamic analysis of che-mical-looping hydrogen generation[J]. Applied Energy, 2013, 112:800-807.
doi: 10.1016/j.apenergy.2013.02.058 |
[15] |
Isarapakdeetham S, Kim-Lohsoontorn P, Wongsakulphasatch S, et al. Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3[J]. International Journal of Hydrogen Energy, 2020, 45(3):1477-1491.
doi: 10.1016/j.ijhydene.2019.11.077 |
[16] | 王瑞义, 刘欢, 郑占丰, 等. 低温下Pt/Al2O3和 Pd/Al2O3光辅助乙二醇水相重整制氢研究[J]. 燃料化学学报, 2019, 47(12):1486-1494. |
[17] |
Kim H D, Park H J, Kim T W, et al. Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(10):8310-8317.
doi: 10.1016/j.ijhydene.2012.02.160 |
[18] |
Zhang Jianguang, Xu Ningge. Hydrogen production from ethylene glycol aqueous phase reforming over Ni-Al layered hydrotalcite-derived catalysts[J]. Catalysts, 2020, 10(1):54.
doi: 10.3390/catal10010054 |
[19] |
Chen Dong, Wang Wenju, Liu Chenlong. Hydrogen production through glycerol steam reforming over beehive-biomimetic graphene-encapsulated nickel catalysts[J]. Renewable Energy, 2020, 145:2647-2657.
doi: 10.1016/j.renene.2019.08.022 |
[20] |
Suffredini D F P, Thyssen V V, de Almeida P M M, et al. Renewable hydrogen from glycerol reforming over nickel aluminate-based catalysts[J]. Catalysis Today, 2017, 289:96-104.
doi: 10.1016/j.cattod.2016.07.027 |
[21] |
Ni Ying, Wang Chao, Chen Ying, et al. High purity hydrogen production from sorption enhanced chemical looping glycerol reforming:Application of NiO-based oxygen transfer materials and potassium promoted Li2ZrO3 as CO2 sorbent[J]. Applied Thermal Engineering, 2017, 124:454-465.
doi: 10.1016/j.applthermaleng.2017.06.003 |
[22] | 贺仪平, 邓梦婷, 朱阁, 等. 双功能钙基催化剂催化苯酚重整制氢实验研究[J]. 环境科学与技术, 2019, 42(8):40-46. |
[23] |
Abbas T, Tahir M, Saidina Amin N A. Enhanced metal-support interaction in Ni/Co3O4/TiO2 nanorods toward stable and dynamic hydrogen production from phenol steam reforming[J]. Industrial & Engineering Chemistry Research, 2018, 58(2):517-530.
doi: 10.1021/acs.iecr.8b03542 |
[24] |
Liu Chenlong, Chen Dong, Cao Yongan, et al. Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renewable Energy, 2020, 161:408-418.
doi: 10.1016/j.renene.2020.07.089 |
[25] |
Choi I H, Hwang K R, Lee K Y, et al. Catalytic steam reforming of biomass-derived acetic acid over modified Ni/γ-Al2O3 for sustainable hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(1):180-190.
doi: 10.1016/j.ijhydene.2018.04.192 |
[26] |
Zhou Qing, Zhong Xinyan, Xie Xingyue, et al. Auto-thermal reforming of acetic acid for hydrogen production by ordered mesoporous Ni-xSm-Al-O catalysts:Effect of samarium promotion[J]. Renewable Energy, 2020, 145:2316-2326.
doi: 10.1016/j.renene.2019.07.078 |
[27] | 杨浩, 李辉谷, 谢星月, 等. 乙酸自热重整制氢用类水滑石衍生Zn-Ni-Al-Fe-O催化剂研究[J]. 燃料化学学报, 2018, 46(11):1352-1358. |
[28] |
Kumar A, Sinha A S K. Comparative study of hydrogen production from steam reforming of acetic acid over synthesized catalysts via MOF and wet impregnation methods[J]. International Journal of Hydrogen Energy, 2020, 45(20):11512-11526.
doi: 10.1016/j.ijhydene.2020.02.097 |
[1] | ZHU Jicheng, YANG Qixin, LIANG Haoquan, WANG Zengkun, OUYANG Fugui, DI Jing, GAI Xikun. Effect of confined catalyst Ni@S2 on performance of methane dry reforming reaction [J]. Inorganic Chemicals Industry, 2025, 57(2): 138-146. |
[2] | LIU Qingcui, LI Yunqing, PANG Ruiqi, TIAN Yaping, CHEN Yiying, LI Fang, LI Qiming. Preparation of Zn/Co-ZIF derived porous carbon supported Pd as catalyst and its application to formic acid dehydrogenation [J]. Inorganic Chemicals Industry, 2024, 56(6): 147-152. |
[3] | LI Jiangpeng, ZHANG Huibin. Synergistic degradation of methylene blue by photo-Fenton and photocatalytic with 3D porous LaFeO3/CeO2/SrTiO3 [J]. Inorganic Chemicals Industry, 2024, 56(5): 141-148. |
[4] | WANG Chao, SONG Guoliang, XIAO Han. Industrial application of THFS-2 sulfurized reforming prehydrogenation catalysts [J]. Inorganic Chemicals Industry, 2024, 56(5): 94-100. |
[5] | JIN Suna, LÜ Ruiliang. Research progress of heterogeneous catalytic ozonation for industrial wastewater treatment [J]. Inorganic Chemicals Industry, 2024, 56(3): 28-38. |
[6] | CHEN Xingliang, FAN Wenjuan, CHANG Hui, HUANG Haiping, JIANG Zhiqiang. Study on collaborative strategy between Fe3+ and Ni-based metal-organic frameworks for boosting electrocatalytic oxygen evolution [J]. Inorganic Chemicals Industry, 2024, 56(2): 152-158. |
[7] | HOU Zhanggui, WU Chongchong, ZHANG Siran. Research progress of CO2 conversion via Reverse Water-Gas Shift reaction [J]. Inorganic Chemicals Industry, 2024, 56(11): 105-115. |
[8] | MA Yihong, CHEN Xingtao, TANG Lei. Treatment of printing wastewater by chemical coagulation-TiO2/g-C3N5 photocatalytic degradation [J]. Inorganic Chemicals Industry, 2024, 56(10): 151-158. |
[9] | JIN Shengshi, LIU Kaijie, LIU Qiuwen, ZHANG Yibo, YANG Xiangguang. Study on catalytic performance of phosphoric acid modified CeO2 nanorod supported Pt catalyst for propane combustion [J]. Inorganic Chemicals Industry, 2024, 56(1): 141-148. |
[10] | GUO Zini, QU Jiyan, LUO Jianhong. Oxidation of NO x by low-temperature plasma using catalysts with different band gaps [J]. Inorganic Chemicals Industry, 2023, 55(9): 126-133. |
[11] | LIU Wei, XU Yan, CHEN Yongsheng, SUN Chunhui, ZHANG Jingcheng, ZHU Jinjian, LIU Yang. Effect of alkaline earth metals on performance of Cu/Al2O3 ester hydrogenation catalyst [J]. Inorganic Chemicals Industry, 2023, 55(9): 140-144. |
[12] | MA Chao, HU Jieqiong, XIE Ming, CHEN Yongtai, ZHANG Qiao, CHEN Song, FANG Jiheng, QIU Leqi. Research progress of preparation of Pt-Au-Ni nanoalloys [J]. Inorganic Chemicals Industry, 2023, 55(9): 26-32. |
[13] | YANG Bo, LIANG Zhiyan, LIU Wenyuan, CAO Jiazhen, LIU Xinyue, XING Mingyang. Research progress of application of molybdenum-based catalytic materials for water pollution control [J]. Inorganic Chemicals Industry, 2023, 55(8): 1-12. |
[14] | MA Zhiyuan, LÜ Dawei, WANG Hui, JIN Nannan, ZHU Jinjian, ZHANG Jingcheng. Industrial application of THDS-2/3 catalyst in capacity expansion of hydrofining plant [J]. Inorganic Chemicals Industry, 2023, 55(8): 140-144. |
[15] | CHEN Junxue, MO Jianxin, ZHOU Zhiyu, LI Zhonglin, WANG Ding, LI Yuping, HU Yongjun, JIANG Xuexian, LI Yibing. Study on synthesis of NaFe x Cr y (SO4)2(OH)6 and their electrochemical properties [J]. Inorganic Chemicals Industry, 2023, 55(8): 71-76. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 591
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297