Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (10): 36-40.doi: 10.19964/j.issn.1006-4990.2020-0598
• Reviews and Special Topics • Previous Articles Next Articles
Liu Yang(),Cai Zongying(
),Cao Weigang,Liu Yuzhao
Received:
2020-11-09
Online:
2021-10-10
Published:
2021-10-11
Contact:
Cai Zongying
E-mail:790043167@qq.com;caizy@ncst.edu.cn
CLC Number:
Liu Yang,Cai Zongying,Cao Weigang,Liu Yuzhao. Research progress on lithium sodium titanate for lithium ion batteries[J]. Inorganic Chemicals Industry, 2021, 53(10): 36-40.
Table 1
Modification performance of batteries with different doping ion"
掺杂离子 | 取代位置 | 最佳掺杂分子式 | 初始放电容量/(mA·h·g-1) | 容量保持率/% | 锂离子扩散系数/(cm2·s-1) |
---|---|---|---|---|---|
Sr[ | Na | Sr0.5Na2Ti6O14 | 184.0(50 mA/g) | 96.09 | 2.365×10-15 |
Li、Cu、Y、Ce、Nb[ | Na | Na1.9Nb0.1Li2Ti6O14 | 259.4(100 mA/g) | 94.7 | 2.44×10-14 |
Al、V、Zr[ | Ti | Li2Na2Ti5.9Al0.1O14 | 240.3(50 mA/g) | 88.9 | 8.38×10-15 |
Al[ | Li | Li1.95Al0.05Na2Ti6O14 | 268.8(100 mA/g) | 91.2 | 5.77×10-15 |
Ba[ | Na | NaBa0.5Li2Ti6O14 | 109.6(50 mA/g) | 99.1 | 1.53×10-17 |
Ba[ | Na、Li | BaLi0.5Na1.5Ti6O14 | 163.9(50 mA/g) | 100 | 2.1×10-16(约) |
Mg[ | Li | Li1.95Mg0.05Na2Ti6O14 | 167.4(500 mA/g) | 98.8 | 3.16×10-15 |
Na、Mg、Cr、Ti、V[ | Li | Na2Li1.9Cr0.1Ti6O14 | 262.2(100 mA/g) | 91.3 | 1.95×10-14 |
Li[ | Na | Na2.05Li1.95Ti6O14 | 302.9(100 mA/g) | 91.6 | 8.28×10-15 |
Table 2
Modification performance of batteries with different coating materials"
包覆材料 | 包覆方法 | 最佳包覆 | 形貌特征 | 初始放电比 容量/(mA·h·g-1) | 容量保持率/% | 锂离子扩散 系数/(cm2·s-1) |
---|---|---|---|---|---|---|
Li0.33La0.56TiO3[ | 固相法 | 5%(质量分数) | 附着颗粒表面 | 156.7(500 mA/g) | 88.0 | 5×10-16 |
CB/GN/CNT[ | 固相法 | CNT | 纳米管穿在颗粒之间 | 111.4(100 mA/g) | 99.1 | — |
Cu/C[ | 化学沉积法 | 0.2 L/g | 包裹颗粒表面 | 140.1(50 mA/g) | 85.9 | — |
MgF2[ | 化学沉积法 | 5.0%(质量分数) | 包裹颗粒表面 | 483.4(50 mA/g) | 77.2 | 2.49×10-16 |
Er2O3[ | 溶剂热法 | 4.0%(质量分数) | 包裹颗粒表面 | 320.0(50 mA/g) | 70.1 | 9.10×10-15 |
Ag[ | 化学沉积法 | 6.0%(质量分数) | 附着颗粒表面 | 200.3(100 mA/g) | 95.0 | 1.514×10-15 |
C(木薯粉)[ | 热分解法 | 12;1(原料与碳质量比) | 包裹颗粒表面 | 101.7(0.1C) | 61.2 | — |
[1] |
Kubota K, Kumakura S, Yoda Y, et al. Electrochemistry and solid-state chemistry of NaMeO2(Me=3 d transition metals)[J]. Advanced Energy Materials, 2018, 8(17).Doi: 10.1002/aenm.201703415.
doi: 10.1002/aenm.201703415 |
[2] | Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Elec-Electrochemical Society, 1995, 142(5):1431-1435. |
[3] | Huang S, Wen Z, Zhu X, et al. Preparation and electrochemical per-formance of Ag doped Li4Ti5O12[J]. Electrochemistry Communicatio-ns, 2004, 6(11):1093-1097. |
[4] | Dambournet D, Belharouak I, Amine K. MLi2Ti6O14(M=Sr,Ba,2Na)lithium insertion titanate materials:A comparative study[J]. Inor-ganic Chemistry, 2010, 49(6):2822-2826. |
[5] | 朱彦荣, 刘思远, 诸荣孙, 等. 锂离子电池 MLi2Ti6O14(M=2Na,Sr,Ba)负极材料的研究进展[J]. 化工新型材料, 2018, 46(2):35-39. |
[6] | Wu K, Wang D, Lin X, et al. Comparative study of Na2Li2Ti6O14 pre-pared by different methods as advanced anode material for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2014, 717:10-16. |
[7] | Torres-Martínez L M, Ibarra J, Loredo J R, et al. Phase formation and crystal structure of ternary compound Na2Li2Ti6O14[J]. Solid St-ate Sciences, 2007, 8(11):1281-1289. |
[8] | 梁康, 任玉荣, 唐有根, 等. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9):9041-9047. |
[9] |
Yi T F, Zhu Y R, Tao W, et al. Recent advances in the research of MLi2Ti6O14(M=2Na,Sr,Ba,Pb) anode materials for Li-ion batteri-es[J]. Journal of Power Sources, 2018, 399:26-41.
doi: 10.1016/j.jpowsour.2018.07.086 |
[10] |
Li P, Wu K, Wang P, et al. Preparation,electrochemical character-ization and in-situ kinetic observation of Na2Li2Ti6O14 as anode ma-terial for lithium ion batteries[J]. Ceramics International, 2015, 41(10):14508-14516.
doi: 10.1016/j.ceramint.2015.07.095 |
[11] |
Shu J, Wu K, Wang P, et al. Lithiation and delithiation behavior of sodium lithium titanate anode[J]. Electrochimica Acta, 2015, 173:595-606.
doi: 10.1016/j.electacta.2015.05.106 |
[12] | 唐好庆, 王皓东, 朱姜涛, 等. 锂离子电池负极材料Li2Na2Ti6O14的制备及其电化学性能研究[C]//中国电子学会化学与物理电源技术分会. 第31届全国化学与物理电源学术年会, 2015. |
[13] |
Yin S Y, Song L, Wang X Y, et al. Reversible lithium storage in Na2Li2Ti6O14 as anode for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(6):1251-1254.
doi: 10.1016/j.elecom.2009.04.013 |
[14] | 李震春, 邓健秋, 王仲民, 等. 锂离子电池负极材料Na2Li2Ti6O14的嵌脱锂过程动力学研究[J]. 桂林电子科技大学学报, 2012, 32(3):249-253. |
[15] | Zhang H, Gao X P, Li G R, et al. Electrochemical lithium storage of sodium titanate nanotubes and nanorods[J]. Electrochimica Ac-ta, 2008, 53(24):7061-7068. |
[16] |
Zhao F, Xue P, Ge H, et al. Na-doped Li4Ti5O12 as an anode materi-al for sodium-ion battery with superior rate and cycling performan-ce[J]. Journal of The Electrochemical Society, 2016, 163(5):A690-A695.
doi: 10.1149/2.0781605jes |
[17] | 王杰. 负极材料钛酸锂的液相制备及性能研究[D]. 合肥: 合肥工业大学, 2018. |
[18] |
Fan S S, Zhong H, Yu H T, et al. Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode ma-terial for lithium-ion battery[J]. Science China Materials, 2017, 60(5):427-437.
doi: 10.1007/s40843-017-9033-5 |
[19] | 杜敏, 宋滇, 谢玲, 等. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19):3281-3294. |
[20] |
Yan W, Zhang X, Long N, et al. Na2Li2Ti6O14 nanowires as ultra-long cycling performance anode material for lithium ion storage[J]. Ce-ramics International, 2020, 46(10).Doi: 10.1016/j.ceramint.2020.03.022.
doi: 10.1016/j.ceramint.2020.03.022 |
[21] |
Wang C, Xin X, Shu M, et al. Scalable synjournal of one-dimensional Na2Li2Ti6O14 nanofibers as ultrahigh rate capability anodes for lithi-um-ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6(3):646-653.
doi: 10.1039/C8QI00973B |
[22] | Abbasian A R, Rahimipour M R, Hamnabard Z. Hydrothermal sy-njournal of lithium meta titanate nanocrystallites[J]. Procedia Ma-terials Science, 2015, 11:336-341. |
[23] | 尹盛玉. 锂离子电池负极材料钛酸盐的合成及电化学性能研究[D]. 武汉: 武汉大学, 2010. |
[24] | 高利亭, 唐致远, 张新河, 等. 熔盐辅助固相法制备尖晶石型钛酸锂[J]. 电源技术, 2015, 39(3):458-460. |
[25] |
Yin S Y, Feng C Q, Wu S J, et al. Molten salt synjournal of sodium lithium titanium oxide anode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 642:1-6.
doi: 10.1016/j.jallcom.2015.04.113 |
[26] | 蔡枝英. 新型锂离子电池负极材料 NaLiTi3O7 的制备及其电化学性能研究[D]. 长沙: 中南大学, 2012. |
[27] | 唐致远, 阳晓霞, 陈玉红, 等. 钛酸锂电极材料的研究进展[J]. 电源技术, 2007, 31(4):332-336. |
[28] | Lan H, Qian S, Wang Q, et al. Sr1-xNa2xLi2Ti6O14(0≤x≤1) as anode materials for rechargeable Li-ion batteries[J]. Ceramics Internatio-nal, 2017, 43(1):1552-1557. |
[29] | Wang P F, Qian S S, Yi T F, et al. Effect of sodium-site doping on enhancing the lithium storage performance of sodium lithium titanate[J]. ACS Applied Materials & Interfaces, 2016, 8(16):10302-10314. |
[30] |
Wang P F, Li P, Yi T F, et al. Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum[J]. Journal of Power Sources, 2015, 293:33-41.
doi: 10.1016/j.jpowsour.2015.05.076 |
[31] |
Lao M, Li P, Wang P, et al. Advanced electrochemical performance of Li1.95Al0.05Na2Ti6O14 anode material for lithium ion batteries[J]. Electrochimica Acta, 2015, 176:694-704.
doi: 10.1016/j.electacta.2015.07.082 |
[32] |
Sun C, Li X, Wu X, et al. Improved the lithium storage capability of Na2Li2Ti6O14 by barium doping[J]. Journal of Electroanalytical Chemistry, 2017, 802:100-108.
doi: 10.1016/j.jelechem.2017.09.007 |
[33] |
Tao W, Xu M L, Zhu Y R, et al. Structure and electrochemical per-formance of BaLi2-xNaxTi6O14(0≤x≤2) as anode materials for lithi- um-ion battery[J]. Science China Materials, 2017, 60(8):728-738.
doi: 10.1007/s40843-017-9065-8 |
[34] |
Lao M, Qian S, Yu H, et al. Enhanced electrochemical properties of Mg2+ doped Li2Na2Ti6O14 anode material for lithium-ion batteri-es[J]. Electrochimica Acta, 2016, 196:642-652.
doi: 10.1016/j.electacta.2016.03.035 |
[35] |
Wang P, Li P, Yi T F, et al. Enhanced lithium storage capability of sodium lithium titanate via lithium-site doping[J]. Journal of Power Sources, 2015, 297:283-294.
doi: 10.1016/j.jpowsour.2015.08.007 |
[36] |
Lao M, Lin X, Li P, et al. Preparation and electrochemical charac-terization of Li2+xNa2-xTi6O14 (0≤x≤0.2) as anode materials for li-thium-ion batteries[J]. Ceramics International, 2015, 41(2):2900-2907.
doi: 10.1016/j.ceramint.2014.10.115 |
[37] | 袁华, 何云蔚, 艾常春. 钛酸锂作为锂离子电池负极材料的改性进展[J]. 武汉工程大学学报, 2014, 36(8):20-26. |
[38] |
Han X, Gui X, Tao W, et al. Facile strategy to fabricate Na2Li2Ti6O14@Li0.33La0.56TiO3 composites as promising anode materials for lithium-ion battery[J]. Ceramics International, 2018, 44(11).Doi: 10.1016/j.ceramint.2018.04.013.
doi: 10.1016/j.ceramint.2018.04.013 |
[39] |
Wu K, Shu J, Lin X, et al. Enhanced electrochemical performance of sodium lithium titanate by coating various carbons[J]. Journal of Power Sources, 2014, 272:283-290.
doi: 10.1016/j.jpowsour.2014.08.088 |
[40] |
Wu K, Lin X, Shao L, et al. Copper/carbon coated lithium sodium titanate as advanced anode material for lithium-ion batteries[J]. Journal of Power Sources, 2014, 259:177-182.
doi: 10.1016/j.jpowsour.2014.02.097 |
[41] |
Ma W W, Yu H T, Guo C F, et al. Improving the structural stability and electrochemical performance of Na2Li2Ti6O14 nanoparticles via MgF2 coating[J]. RSC Advances, 2019, 9(28).Doi: 10.1039/C9RA02392E.
doi: 10.1039/C9RA02392E |
[42] | 马薇薇. NaLiTi3O7负极材料的形貌控制、表面包覆及电化学性能[D]. 哈尔滨: 黑龙江大学, 2019. |
[43] |
Qian S, Yu H, Yan L, et al. Ag enhanced electrochemical perfor ma-nce for Na2Li2Ti6O14 anode in rechargeable lithium-ion batteries[J]. Ceramics International, 2016, 42(6):6874-6882.
doi: 10.1016/j.ceramint.2016.01.071 |
[44] |
Prihandoko B, Priyono S, Subhan A, et al. Variation of carbon coat-ing on Li2Na2Ti6O14 as anode material of lithium battery[J]. IOP Conference Series:Materials Science and Engineering, 2017, 202.Doi: 10.1088/1757-899X/202/1/012053.
doi: 10.1088/1757-899X/202/1/012053 |
[1] | TIAN Peng, ZHANG Haoran, XU Jingang, MOU Chenxi, XU Qianjin, NING Guiling. Study on aluminum sol modified anode and cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry, 2024, 56(9): 44-53. |
[2] | ZHAO Tianting, ZHU Delun, YANG Lin, ZHOU Xinlei. Preparation and process optimization of porous silicon anode materials for lithium-ion battery [J]. Inorganic Chemicals Industry, 2024, 56(5): 31-38. |
[3] | FU Yu, ZHANG Boshuang, YANG Jianmao, LIU Jianyun. Research progress of lithium manganese oxide materials in electrochemical lithium extraction applications [J]. Inorganic Chemicals Industry, 2024, 56(12): 62-69. |
[4] | XU You, MA Luxiang, HAI Chunxi, DONG Shengde, XU Qi, HE Xin, PAN Wencheng, GAO Yawen, CHEN Ju, SUN Yanxia, ZHOU Yuan. Research progress and industrialization challenge of coal-based hard carbon anode materials for sodium ion batteries [J]. Inorganic Chemicals Industry, 2024, 56(11): 30-38. |
[5] | YU Hui, WANG Yubin, LIAO Zhejun, YANG Yunguang. Overview of recycling and utilization process of waste ternary lithium-ion power batteries [J]. Inorganic Chemicals Industry, 2023, 55(7): 32-37. |
[6] | ZHU Zhihong, ZHU Yongfang. Study on preparation and properties of silicon doped lithium manganate by self-propagating combustion [J]. Inorganic Chemicals Industry, 2023, 55(5): 66-70. |
[7] | ZHANG Rui, WANG Zhenghao, CHEN Liang, GUO Xiaodong, LUO Dongmei. Synthesis of sodium titanate anode from industrial titanium liquid and its sodium storage performance [J]. Inorganic Chemicals Industry, 2023, 55(12): 66-73. |
[8] | XU Qianjin,XU Jingang,TIAN Peng,LIU Kunji,GAO Tingting,NING Guiling. Research progress of alumina coated cathode materials for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(1): 46-55. |
[9] | LIU Jinhang,YANG Zhipeng,CHEN Xiudong,LUO Yuxuan,YU Langhua,WANG Yawei,ZHAN Changchao,CAO Xiaohua. Preparation of new porous carbon and its lithium storage performance [J]. Inorganic Chemicals Industry, 2022, 54(9): 85-89. |
[10] | KUANG Xinliang,LIU Chuixiang,XIONG Peng. Industry analysis and market prospect of lithium ion battery [J]. Inorganic Chemicals Industry, 2022, 54(8): 12-19. |
[11] | ZHOU Lei,YUAN Yongshun,LI Lu,LIU Bingguang,LI Jiansheng. Research progress on preparation and application of lithium ion sieve from spent lithium ion batteries [J]. Inorganic Chemicals Industry, 2022, 54(8): 33-39. |
[12] | HOU Shunli,ZHAO Duan,ZHOU Geng,WEI Shishi,LI Jian,WANG Jiatai. Research progress on doping modification of high nickel ternary nickel-cobalt-aluminum cathode material [J]. Inorganic Chemicals Industry, 2022, 54(8): 40-46. |
[13] | MA Cunshuang,WAN Yanhua,XU Yongkai,CHEN Weihua. Preparation and sodium storage properties of ultra?thin N and S doped carbon coated FeS2 [J]. Inorganic Chemicals Industry, 2022, 54(6): 55-60. |
[14] | WANG Wei,LIU Wei,WU Yang,YANG Shenshen. Research progress on molybdenum disulfide-based anode materials for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2022, 54(10): 87-95. |
[15] | Bao Kejie,Lu lingran. Study on preparation and performance of negative electrode materials for batteries of new energy vehicles [J]. Inorganic Chemicals Industry, 2021, 53(3): 54-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297