Inorganic Chemicals Industry ›› 2020, Vol. 52 ›› Issue (3): 28-34.doi: 10.11962/1006-4990.2019-0602
• Reviews and Special Topics • Previous Articles Next Articles
Long Yunfei1,Su Jing1,Lü Xiaoyan2,Wen Yanxuan1()
Received:
2019-11-29
Online:
2020-03-10
Published:
2020-03-31
Contact:
Wen Yanxuan
E-mail:wenyanxuan@vip.163.com
CLC Number:
Long Yunfei,Su Jing,Lü Xiaoyan,Wen Yanxuan. Advances in transition metal fluoride phosphate cathode materials for lithium-ion batteries and sodium-ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(3): 28-34.
[1] | Yang Z G, Zhang J L, Kintner-Meyer M C W , et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011,111(5):3577-3613. |
[2] | Ding Y L, Cano Z P, Yu A P , et al. Automotive Li ion batteries:current status and future perspectives[J]. Electrochemical Energy Reviews, 2019,2(1):1-28. |
[3] | 李慧, 吴川, 吴锋 , 等. 钠离子电池:储能电池的一种新选择[J]. 化学学报, 2014,72(1):21-29. |
[4] | Andre D, Kim S J, Lamp P , et al. Future generations of cathode materials:an automotive industry perspective[J]. Journal of Materials Chemistry A, 2015,3(13):6709-6732. |
[5] | Wang J J, Sun X L . Olivine LiFePO4:the remaining challenges for future energy storage[J]. Energy & Environmental Science, 2015,8(4):1110-1138. |
[6] | Antipov E V, Khasanova N R, Fedotov S S . Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries[J]. IUCrJ, 2015,2(1):85-94. |
[7] | Ellis B L, Makahnouk W R M, Makimura Y , et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007,6(10):749-753. |
[8] | Recham N, Chotard J N, Dupont L , et al. Ionothermal synjournal of sodium-based fluorophosphate cathode materials[J]. Journal of The Electrochemical Society, 2009,156(12):A993-A999. |
[9] | Sanz F, Parada C, Ruiz-Valero C . Crystal growth,crystal structure and magnetic properties of disodium cobalt fluorophosphates[J]. Journal of Materials Chemistry, 2001,11(1):208-211. |
[10] | Ellis B L, Makahnouk W R M, Rowan-Weetaluktuk W N , et al. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates(A=Na,Li;M=Fe,Mn,Co,Ni)[J]. Chemistry of Materials, 2010,22(3):1059-1070. |
[11] | Smiley D L, Goward G R . Ex situ 23Na solid-state NMR reveals the local Na-ion distribution in carbon-coated Na2FePO4F during electrochemical cycling [J]. Chemistry of Materials, 2016,28(21):7645-7656. |
[12] | Li Q, Liu Z G, Zheng F , et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F cathode[J]. Angewandte Chemie International Edition, 2018,57(37):11918-11923. |
[13] | Song W X, Ji X B, Wu Z P , et al. Na2FePO4F cathode utilized in hybrid-ion batteries:a mechanistic exploration of ion migration and diffusion capability[J]. Journal of Materials Chemistry A, 2014,2(8):2571-2577. |
[14] | Tripathi R, Wood S M, Islam M S , et al. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4[J]. Energy & Environmental Science, 2013,6(8):2257-2264. |
[15] | Okada S, Ueno M, Uebou Y , et al. Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries[J]. Journal of Power Sources, 2005,146(1/2):565-569. |
[16] | Dutreilh M, Chevalier C, El-Ghozzi M , et al. Synjournal and crystal structure of a new lithium nickel fluorophosphate Li2[NiF(PO4)] with an ordered mixed anionic framework[J]. Journal of Solid State Chemistry, 1999,142(1):1-5. |
[17] | Nagahama M, Hasegawa N, Okada S . High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes[J]. Journal of The Electrochemical Society, 2010,157(6):A748-A752. |
[18] | Khasanova N R, Drozhzhin O A, Storozhilova D A , et al. New form of Li2FePO4F as cathode material for Li-ion batteries[J]. Chemistry Materials, 2012,24(22):4271-4273. |
[19] | Fedotov S S, Kabanov A A, Kabanova N A , et al. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017,121(6):3194-3202. |
[20] | Hadermann J, Abakumov A M, Turner S , et al. Solving the structure of Li ion battery materials with precession electron diffraction:Application to Li2CoPO4F[J]. Chemistry of Materials, 2011,23(15):3540-3545. |
[21] | Okumura T, Shikano M, Yamaguchi Y , et al. Structural changes in Li2CoPO4F during lithium-ion battery reactions[J]. Chemistry of Materials, 2015,27(8):2839-2847. |
[22] | Kim S W, Seo D H, Kim H , et al. A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes[J]. Physical Chemistry Chemical Physics:PCCP, 2012,14(10):3299-3303. |
[23] | Lee S, Park S S . Lithium transition metal fluorophosphates (Li2CoPO4F and Li2NiPO4F) as cathode materials for lithium ion battery from atomistic simulation[J]. Journal of Solid State Chemistry, 2013,204:329-334. |
[24] | Karakulina O M, Khasanova N R, Drozhzhin O A , et al. Antisite disorder and bond valence compensation in Li2FePO4F cathode for Li-ion batteries[J]. Chemistry of Materials, 2016,28(21):7578-7581. |
[25] | Yu J G, Rosso K M, Zhang J G , et al. Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries[J]. Journal of Materials Chemistry, 2011,21(32):12054-12058. |
[26] | Zheng Y, Zhang P, Wu S Q , et al. First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries[J]. Journal of The Electrochemical Society, 2013,160(6):A927-A932. |
[27] | Amaresh S, Kim G J, Karthikeyan K , et al. Synjournal and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling[J]. Physical Chemistry Chemical Physics, 2012,14(34):11904-11909. |
[28] | Fedotov S S, Kuzovchikov S M, Khasanova N R , et al. Synjournal,structure and electrochemical properties of LiNaCo0.5Fe0.5PO4F fluoride-phosphate[J]. Journal of Solid State Chemistry, 2016,242:70-77. |
[29] | Hu H, Wang Y, Huang Y , et al. Na2FePO4F/C composite synthesized via a simple solid state route for lithium-ion batteries[J]. Journal of Central South University, 2019,26(6):1521-1529. |
[30] | Tsu-Ura A, Torii H, Hasegawa T , et al. Synjournal of Na2FePO4F using polytetrafluoroethylene[J]. Journal of the Ceramic Society of Japan, 2018,126(5):336-340. |
[31] | Wu X B, Gong Z L, Tan S , et al. Sol-gel synjournal of Li2CoPO4F/C nanocomposite as a high power cathode material for lithium ion batteries[J]. Journal of Power Sources, 2012,220:122-129. |
[32] | Kosova N V, Devyatkina E T, Slobodyuk A B . In situ and ex situ X-ray study of formation and decomposition of Li2CoPO4F under heating and cooling.Investigation of its local structure and electrochemical properties[J]. Solid State Ionics, 2012,225:570-574. |
[33] | Deng X, Shi W X, Sunarso J , et al. A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life[J]. ACS Applied Materials & Interfaces, 2017,9(19):16280-16287. |
[34] | Schoiber J, Berger R J F, Bernardi J , et al. Straightforward solvo-thermal synjournal toward phase pure Li2CoPO4F[J]. Crystal Growth & Design, 2016,16(9):4999-5005. |
[35] | Ling R, Cai S, Shen S , et al. Synjournal of carbon coated Na2FePO4F as cathode materials for high-performance sodium ion batteries[J]. Journal of Alloys and Compounds, 2017,704:631-640. |
[36] | Ling R, Cai S, Xie D L , et al. Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries[J]. Journal of Materials Science, 2018,53(4):2735-2747. |
[37] | Hua S S, Cai S, Ling R , et al. Synjournal of porous sponge-like Na2FePO4F/C as high-rate and long cycle-life cathode material for sodium ion batteries[J]. Inorganic Chemistry Communications, 2018,95:90-94. |
[38] | Goubard-Bretesche N, Kemnitz E, Pinna N . Fluorolytic sol-gel route and electrochemical properties of polyanionic transition-metal phosphate fluorides[J]. Chemistry:A European Journal, 2019,25(24):6189-6195. |
[39] | Sharma L, Nayak P K, de la Llave E , et al. Electrochemical and diffusional investigation of Na2Fe ⅡPO4F fluorophosphate sodium nsertion material obtained from Fe Ⅲ precursor [J]. ACS Applied Materials & Interfaces, 2017,9(40):34961-34969. |
[40] | Langrock A, Xu Y H, Liu Y H , et al. Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes[J]. Journal of Power Sources, 2013,223:62-67. |
[41] | Brisbois M, Krins N, Hermann R P , et al. Spray-drying synjournal of Na2FePO4F/carbon powders for lithium-ion batteries[J]. Materials Letters, 2014,130:263-266. |
[42] | Lin X C, Hou X, Wu X B , et al. Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries[J]. RSC Advance, 2014,4(77):40985-40993. |
[43] | Zou H, Li S D, Wu X B , et al. Spray-drying synjournal of pure Na2CoPO4F as cathode material for sodium ion batteries[J]. ECS Electrochemistry Letters, 2015,4(6):A53-A55. |
[44] | Brisbois M, Caes S, Sougrati M T , et al. Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries:Operando Mössbauer study of spray-dried composites[J]. Solar Energy Materials and Solar Cells, 2016,148:67-72. |
[45] | Mahmoud A, Caes S, Brisbois M , et al. Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution[J]. Journal of Solid State Electrochemistry, 2018,22(1):103-112. |
[46] | Wu L, Hu Y, Zhang X P , et al. Synjournal of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries[J]. Journal of Power Sources, 2018,374:40-47. |
[47] | Hu Y, Wu L, Liao G X . Electrospinning synjournal of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries[J]. Ceramics International, 2018,44(15):17577-17584. |
[48] | Wang F F, Zhang N, Zhao X D , et al. Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics[J]. Advanced Science, 2019,6(13):1900649. |
[49] | Ko W, Yoo J K, Park H , et al. Development of Na2FePO4F/conducting-polymer composite as an exceptionally high performance cathode material for Na-ion batteries[J]. Journal of Power Sources, 2019,432:1-7. |
[50] | Yang F M, Sun W W, Li Y H , et al. Li2FePO4F and its metal-doping for Li-ion batteries:an ab initio study[J]. RSC Advances, 2014,4(91):50195-50201. |
[51] | Jin D, Qiu H L, Du F , et al. Co-doped Na2FePO4F fluorophosphates as a promising cathode material for rechargeable sodium-ion batteries[J]. Solid State Science, 2019,93:62-69. |
[52] | Truong Q D, Devaraju M K, Ganbe Y , et al. Structural analysis and electrochemical performance of Li2CoPO4F cathode materials[J]. Electrochimica Acta, 2014,127:245-251. |
[53] | Chen S M, Wen K H, Fan J T , et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries:from liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018,6(25):11631-11663. |
[54] | 王志刚, 赵卫民, 王红春 , 等. FEC基电解液对高压正极材料Li2CoPO4F电化学性能的影响[J]. 电化学, 2018,24(3):216-226. |
[55] | Nagahama M, Hasegawa N, Okada S . High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes[J]. Journal of The Electrochemical Society, 2010,157(6):A748-A752. |
[56] | Chen L, Fan X L, Hu E Y , et al. Achieving high energy density thr-ough increasing the output voltage:a highly reversible 5.3 V battery[J]. Chem, 2019,5(4):896-912. |
[57] | Guan P Y, Zhou L, Yu Z L , et al. Recent progress of surface coat-ing on cathode materials for high-performance lithium-ion batter-ies[J]. Journal of Energy Chemistry, 2020,43:220-235. |
[58] | Amaresh S, Karthikeyan K, Kim K J , et al. Facile synjournal of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteri-es with improved electrochemical properties[J]. Journal of Power Sources, 2013,244:395-402. |
[59] | Amaresh S, Karthikeyan K, Kim K J , et al. Metal oxide coated lithi-um cobalt fluorophosphate cathode materials for lithium secondary batteries-effect of aging and temperature[J]. Journal of Nanoscience and Nanotechnology, 2014,14(10):7545-7552. |
[60] | Amaresh S, Karthikeyan K, Kim K J , et al. Alumina coating on 5 V lithium cobalt fluorophosphate cathode material for lithium secon-dary batteries-synjournal and electrochemical properties[J]. RSC Advances, 2014,4(44):23107-23115. |
[61] | Chang C Y, Huang Z P, Tian R S , et al. Targeted partial surface mo-dification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs[J]. Journal of Power Sources, 2017,364:351-358. |
[62] | Wu X B, Wang S H, Lin X C , et al. Promoting long-term cycling per-formance of high-voltage Li2CoPO4F by the stabilization of electro-de/electrolyte interface[J]. Journal of Materials Chemistry A, 2014,2(4):1006-1013. |
[1] | SONG Jiaxi, JI Renfei, CHEN Jun, LIN Sen, YU Jianguo. Research on characteristics analysis and pretreatment on deeply deactivated power battery ternary cathode materials [J]. Inorganic Chemicals Industry, 2025, 57(2): 44-49. |
[2] | ZHANG Shanshan, ZENG Yule, ZHANG Ting, LIN Sen, LIU Chenglin. Research progress of cathode pre-lithiation technology for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2025, 57(1): 1-13. |
[3] | TIAN Peng, ZHANG Haoran, XU Jingang, MOU Chenxi, XU Qianjin, NING Guiling. Study on aluminum sol modified anode and cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry, 2024, 56(9): 44-53. |
[4] | CHEN Xue, OUYANG Quansheng, SHAO Jiaojing. Recent research progress of lithium-sulfur batteries based on solid-solid reaction mechanism [J]. Inorganic Chemicals Industry, 2024, 56(9): 12-23. |
[5] | LI Yaguang, HAN Dongzhan, QI Lijuan. Recent research on pretreatment of waste lithium-ion batteries and electrolyte recovery technology [J]. Inorganic Chemicals Industry, 2024, 56(2): 1-10. |
[6] | GE Jianhua, XIE Minyan, OUYANG Quansheng, SHAO Jiaojing. Advances in regeneration processes of cathode materials for spent power batteries [J]. Inorganic Chemicals Industry, 2024, 56(12): 79-87. |
[7] | ZHAO Runze, QIAN A′niu. Research progress of lithium recovery for spent lithium-ion batteries and preparation in battery-grade lithium carbonate [J]. Inorganic Chemicals Industry, 2024, 56(12): 70-78. |
[8] | LIU Juan, JIANG Qinglai, ZHANG Yueyi. Study on Al-Zn co-doping of 4.6 V high voltage lithium cobalt oxide cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(11): 59-64. |
[9] | MA Lianren, XIE Hongyan. Study on preparation of LiMn0.7Fe0.3PO4/C cathode materials by two-step solid-phase method with surfactant [J]. Inorganic Chemicals Industry, 2024, 56(11): 39-44. |
[10] | LU Junhao. Study on full element recycling process of retired ternary power lithium battery [J]. Inorganic Chemicals Industry, 2023, 55(6): 92-103. |
[11] | PENG Chenxi, LIU Jun. Research progress of layered transition metal oxides cathode materials for sodium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(10): 1-12. |
[12] | ZHOU Shiyu,HE Ting,FU Tongtong,GUO Zirui,GU Shuai,YU Jianguo. Life cycle and economic assessment of recycling spent lithium-ion batteries with hydrometallurgical process [J]. Inorganic Chemicals Industry, 2023, 55(1): 26-32. |
[13] | QIU Zhixu,ZHU Shaokuan,WEI Yuxiao,LONG Jiaying,HUANG Dongchuang,SHAO Jiaojing. Study on preparation and electrochemical performance of S/MCNT/Fe3O4 cathode materials [J]. Inorganic Chemicals Industry, 2022, 54(6): 73-77. |
[14] | LI Fangkun,WANG Xinyi,XU Xijun,WU Yiwen,YANG Yan,LIU Jun. Nanoconfined encapsulation of iron-germanium alloy anode and its lithium ion storage performance [J]. Inorganic Chemicals Industry, 2022, 54(4): 88-93. |
[15] | YANG Fengyu,DONG Hua,CHEN Botao. Research progress of reaction mechanism of lithium-rich manganese-based cathode materials [J]. Inorganic Chemicals Industry, 2022, 54(12): 19-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297