1 |
EL-DIEB A S, EL-MAADDAWY T A. Assessment of reinforcement corrosion protection of self-curing concrete[J]. Journal of Building Engineering, 2018, 20:72-80.
doi: 10.1016/j.jobe.2018.07.007
|
2 |
高金瑞, 饶美娟, 张克昌, 等. 铁相组分对铁相和高铁低钙水泥熟料水化性能及抗侵蚀性能影响[J]. 硅酸盐通报, 2021, 40(4):1097-1102,1115.
|
|
GAO Jinrui, RAO Meijuan, ZHANG Kechang, et al. Effect of iron phase component on hydration performance and corrosion resistance of iron phase and high-iron low-calcium cement clinker[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4):1097-1102,1115.
|
3 |
张高展, 王宇譞, 杨军, 等. 骨料对混凝土中氯离子传输特性的影响进展[J]. 功能材料, 2022, 53(8):8036-8044.
doi: 10.3969/j.issn.1001-9731.2022.08.006
|
|
ZHANG Gaozhan, WANG Yuxuan, YANG Jun, et al. Review on chloride ion transport behavior in concrete materials:The influence of aggregate[J]. Journal of Functional Materials, 2022, 53(8):8036-8044.
doi: 10.3969/j.issn.1001-9731.2022.08.006
|
4 |
张忠飞, 陈平, 赵艳荣, 等. 不同C4AF含量高铁低钙硅酸盐水泥性能研究[J]. 非金属矿, 2021, 44(4):44-46,49.
|
|
ZHANG Zhongfei, CHEN Ping, ZHAO Yanrong, et al. Study on properties of high-iron low-calcium Portland cement with different C4AF content[J]. Non-Metallic Mines, 2021, 44(4):44-46,49.
|
5 |
CUESTA A, SANTACRUZ I, SANFÉLIX S G, et al. Hydration of C4AF in the presence of other phases:A synchrotron X-ray powder diffraction study[J]. Construction and Building Materials, 2015, 101:818-827.
doi: 10.1016/j.conbuildmat.2015.10.114
|
6 |
ROSE J, BÉNARD A, MRABET S EL, et al. Evolution of iron speciation during hydration of C4AF[J]. Waste Management, 2006, 26(7):720-724.
pmid: 16697177
|
7 |
XUE Jiangwei, LIU Songhui, MA Xiaoe, et al. Effect of different gypsum dosage on the chloride binding properties of C4AF hydrated paste[J]. Construction and Building Materials, 2022, 315:125562.
doi: 10.1016/j.conbuildmat.2021.125562
|
8 |
邹瑜. LDHs功能材料在建筑领域的应用研究进展[J]. 无机盐工业, 2022, 54(6):13-22.
|
|
ZOU Yu. Research progress on application of LDHs functional materials in field of construction[J]. Inorganic Chemicals Industry, 2022, 54(6):13-22.
|
9 |
宋学锋, 张俊涛, 崔贺龙, 等. 热处理水滑石对普通硅酸盐水泥和碱矿渣水泥抗碳化性能的影响[J]. 硅酸盐通报, 2019, 38(11):3379-3384.
|
|
SONG Xuefeng, ZHANG Juntao, CUI Helong, et al. Effect of calcined layered double hydroxides on carbonation resistance of ordinary Portland cement and alkali-activated slag cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11):3379-3384.
|
10 |
GUAN Xuemao, LI Haiyan, LUO Shuqiong, et al. Influence of LiAl-layered double hydroxides with 3D micro-nano structures on the properties of calcium sulphoaluminate cement clinker[J]. Cement and Concrete Composites, 2016, 70:15-23.
doi: 10.1016/j.cemconcomp.2016.03.009
|
11 |
李海艳, 刘小星, 司鹤洋, 等. 纳米类水滑石对硫铝酸盐水泥熟料水化硬化规律的影响[J]. 硅酸盐学报, 2018, 46(7):887-894.
|
|
LI Haiyan, LIU Xiaoxing, SI Heyang, et al. Effect of nano-layered double hydroxides on hydration and hardening of calcium sulphoaluminate cement clinker[J]. Journal of the Chinese Ceramic Society, 2018, 46(7):887-894.
|
12 |
FLOREA M V A, BROUWERS H J H. Chloride binding related to hydration products[J]. Cement and Concrete Research, 2012, 42(2):282-290.
doi: 10.1016/j.cemconres.2011.09.016
|
13 |
刘松辉, 管学茂, 邱满, 等. 通过加速碳化激发γ-C2S矿物的活性[J]. 硅酸盐学报, 2016, 44(5):658-662.
|
|
LIU Songhui, GUAN Xuemao, QIU Man, et al. Activation of γ-C2S mineral by accelerated carbonation[J]. Journal of the Chinese Ceramic Society, 2016, 44(5):658-662.
|
14 |
畅祥祥, 刘松辉, 张程, 等. 胶砂比对低钙固碳胶凝材料砂浆碳化硬化性能的影响[J]. 功能材料, 2022, 53(4):4142- 4149.
doi: 10.3969/j.issn.1001-9731.2022.04.019
|
|
CHANG Xiangxiang, LIU Songhui, ZHANG Cheng, et al. Effect of cement-sand ratio on carbonation hardening properties of low calcium CO2 sequestration binder mortar[J]. Journal of Functional Materials, 2022, 53(4):4142-4149.
doi: 10.3969/j.issn.1001-9731.2022.04.019
|
15 |
TANG Luping, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2):247-253.
doi: 10.1016/0008-8846(93)90089-R
|
16 |
ZHAO Ruiqi, ZHANG Li, FAN Guangxin, et al. Probing the exact form and doping preference of magnesium in ordinary Portland cement clinker phases:A study from experiments and DFT simulations[J]. Cement and Concrete Research, 2021, 144:106420.
doi: 10.1016/j.cemconres.2021.106420
|
17 |
ÁLVAREZ-PINAZO G, CUESTA A, GARCÍA-MATÉ M, et al. Rietveld quantitative phase analysis of Yeelimite-containing cements[J]. Cement and Concrete Research, 2012, 42(7):960- 971.
doi: 10.1016/j.cemconres.2012.03.018
|
18 |
MATSCHEI T, LOTHENBACH B, GLASSER F P. The AFm phase in Portland cement[J]. Cement and Concrete Research, 2007, 37(2):118-130.
doi: 10.1016/j.cemconres.2006.10.010
|
19 |
FORTUNE J M, COEY J M D. Hydration products of calcium aluminoferrite[J]. Cement and Concrete Research, 1983, 13(5):696-702.
doi: 10.1016/0008-8846(83)90060-1
|
20 |
GENG Jian, PAN Chonggen, WANG Yu, et al. Chloride binding in cement paste with calcined Mg-Al-CO3 LDH(CLDH) under different conditions[J]. Construction and Building Materials, 2021, 273:121678.
doi: 10.1016/j.conbuildmat.2020.121678
|
21 |
腾一标. 三乙醇胺对水泥基材料固化氯离子性能的影响[D]. 焦作: 河南理工大学, 2022.
|
|
TENG Yibiao. Effect of triethanolamine on binding chloride ion properties of cement-based materials[D]. Jiaozuo: Henan Polytechnic University, 2022.
|
22 |
苏少龙, 曲晓龙, 钟读乐, 等. 工业氢氧化钙中氧化钙、氢氧化钙及碳酸钙测定方法的研究[J]. 无机盐工业, 2020, 52(5):75-77.
|
|
SU Shaolong, QU Xiaolong, ZHONG Dule, et al. Study on determination of CaO,Ca(OH)2 and CaCO3 in industrial calcium hydroxide[J]. Inorganic Chemicals Industry, 2020, 52(5):75-77.
|
23 |
朱明, 曾浪, 饶美娟. 高铁低钙硅酸盐水泥体系的抗氯离子侵蚀性能研究[J]. 硅酸盐通报, 2018, 37(10):3136-3140.
|
|
ZHU Ming, ZENG Lang, RAO Meijuan. Resistance to chloride ion erosion of high-iron low-calcium silicate cement[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10):3136-3140.
|