1 |
唐浩, 任一鸣, 邵浪, 等. 熔盐电解法乏燃料干法后处理技术研究进展[J]. 核化学与放射化学, 2017, 39(6):385-396.
|
|
TANG Hao, REN Yiming, SHAO Lang, et al. Development of pyroprocessing of spent nuclear fuel by molten salts electrolysis[J]. Journal of Nuclear and Radiochemistry, 2017, 39(6):385-396.
|
2 |
刘海军, 陈晓丽. 国内外乏燃料后处理技术研究现状[J]. 节能技术, 2021, 39(4):358-362.
|
|
LIU Haijun, CHEN Xiaoli. Research status of spent fuel reprocessing technology at home and abroad[J]. Energy Conservation Technology, 2021, 39(4):358-362.
|
3 |
CAMPBELL R E, SULLIVAN T A. Electrorefining uranium in a chloride electrolyte[R]. Washington: US Department of the Interior,Bureau of Mines, 1965.
|
4 |
MARSHALL S, REDEY L, VANDEGRIFT G, et al. Electroformation of uranium hemispherical shells[J]. Argonne National Lab, 1989, 154(23):584-593.
|
5 |
LIU Kui, TAN Tan, ZHOU Xuanpu, et al. The dendrite growth,morphology control and deposition properties of uranium electrorefining[J]. Journal of Nuclear Materials, 2021, 555:153110.
|
6 |
LIU Kui, CHAI Zhifang, SHI Weiqun. Uranium dendritic morphology in the electrorefining:Influences of temperature and current density[J]. Journal of the Electrochemical Society, 2018, 165(3):D98-D106.
|
7 |
TANG Hao, DU Yunfeng, LI Yingru, et al. Electrochemistry of UBr3 and preparation of dendrite-free uranium in LiBr-KBr-CsBr eutectic melts[J]. Journal of Nuclear Materials, 2018, 508:403- 410.
|
8 |
KIM S G, KIM W T, SUZUKI T. Phase-field model for binary allo- ys[J]. Physical Review E, 1999, 60(6):7186-7197.
|
9 |
KARMA A, RAPPEL W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]. Physical Review E, 1998, 57(4):4323-4349.
|
10 |
GUYER J E, BOETTINGER W J, WARREN J A, et al. Phase field modeling of electrochemistry.I.Equilibrium[J]. Physical Review.E,Statistical,Nonlinear,and Soft Matter Physics, 2004, 69(2 Pt 1): 021603.
|
11 |
CHEN Lei, ZHANG Haowei, LIANG Linyun, et al. Modulation of dendritic patterns during electrodeposition:A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300:376-385.
|
12 |
SHIBUTA Y, SATO T, SUZUKI T, et al. Morphology of uranium electrodeposits on cathode in electrorefining process:A phase-field simulation[J]. Journal of Nuclear Materials, 2013, 436(1/2/3):61-67.
|
13 |
LIN Chen, LIU Kui, RUAN Haihui, et al. Mechano-electrochemical phase field modeling for formation and modulation of dendritic pattern:Application to uranium recovery from spent nuclear fuel[J]. Materials & Design, 2022, 213:110322.
|
14 |
YANG Z, SEO P K, KANG C G. Grain size control of semisolid A356 alloy manufactured by electromagnetic stirring[J]. Journal of Materials Science & Technology, 2005, 21(2):219-225.
|
15 |
LI Jiqiang, ZHANG Lei, DONG Xuanpu, et al. Study on microstructure of semi-solid magnesium alloy manufactured by gas bubbles stirring[J]. Advanced Materials Research, 2010, 129-131:728-732.
|
16 |
陈莉娟, 金青林, 蒋业华, 等. 电磁搅拌下铝铜合金初生晶生长机理的初步探讨[J]. 热加工工艺, 2009, 38(11):24-26.
|
|
CHEN Lijuan, JIN Qinglin, JIANG Yehua, et al. Discussion of growth mechanism of primary grain in Al-Cu alloy under electromagnetic stirring[J]. Hot Working Technology, 2009, 38(11):24-26.
|
17 |
LI Wenjie, YANG Xiangjie. Formation mechanism of spherulites in Al-Si7Mg alloy during solidification under flow and stirring[J]. Journal of Alloys and Compounds, 2019, 803:891-900.
|
18 |
EL-DALY A A, IBRAHIEM A A, HAMMAD A E. Impact of permanent magnet stirring on dendrite growth and elastic properties of Sn-Bi alloys revealed by pulse echo overlap method[J]. Journal of Alloys and Compounds, 2018, 767:464-473.
|
19 |
KIM S, YOON D, YOU Y, et al. Performance evaluation of stirrers for preventing dendrite growth on liquid cathode[J]. Journal of the Nuclear Fuel Cycle and Waste Technology, 2009, 7:125- 131.
|
20 |
KOYAMA T, IIZUKA M, KONDO N, et al. Electrodeposition of uranium in stirred liquid cadmium cathode[J]. Journal of Nuclear Materials, 1997, 247:227-231.
|
21 |
TOSTADO M, KAMEL S, JURADO F. Developed Newton-Raphson based Predictor-Corrector load flow approach with high convergence rate[J]. International Journal of Electrical Power & Energy Systems, 2019, 105:785-792.
|