无机盐工业 ›› 2023, Vol. 55 ›› Issue (11): 130-138.doi: 10.19964/j.issn.1006-4990.2023-0072
滕家阳1(), 冯庆革1,2(), 张璇1, 覃方红1, 冯靖航1, 胡嘉文3, 陈超宏3
收稿日期:
2023-02-14
出版日期:
2023-11-10
发布日期:
2023-11-16
通讯作者:
冯庆革,男,博士,教授;E-mail:fengqg@gxu.edu.cn。作者简介:
滕家阳(1997— ),男,在读硕士,主要研究方向为固体废弃物资源化利用;E-mail:964270321@qq.com。
基金资助:
TENG Jiayang1(), FENG Qingge1,2(), ZHANG Xuan1, QIN Fanghong1, FENG Jinghang1, HU Jiawen3, CHEN Chaohong3
Received:
2023-02-14
Published:
2023-11-10
Online:
2023-11-16
摘要:
拟薄水铝石因具有较强的黏结性和在酸性条件下触变凝胶等特性,可作为黏结剂、催化剂载体和原料应用于石油化工、建筑及环保等行业。以危险废物铝灰为原料,经高温焙烧、碱液浸出后通过水热反应制备拟薄水铝石;采用响应面法考察了加热温度、NaHCO3质量分数和反应时间在水热反应中的交互影响,分析了拟薄水铝石物相组成、化学组分、微观形貌和胶溶性能。结果表明:焙烧能有效去除铝灰中氮化铝并固定氟化物,碱浸后铝的相对提取率为36.59%;由NaAlO2溶液制备拟薄水铝石的最佳水热反应条件为加热温度为98 ℃、NaHCO3质量分数为11%、水热反应时间为2 h;对反应制备的拟薄水铝石进行两次洗涤可得到纯度较高、胶溶指数达到95.22%的产物,其比表面积、孔容分别为219.17 m2/g、0.30 cm3/g。最终制备的拟薄水铝石同其他无机铝法制备产物相比,比表面积更高;制备方式上同醇铝法相比,成本更低。
中图分类号:
滕家阳, 冯庆革, 张璇, 覃方红, 冯靖航, 胡嘉文, 陈超宏. 铝灰资源化制备拟薄水铝石的研究[J]. 无机盐工业, 2023, 55(11): 130-138.
TENG Jiayang, FENG Qingge, ZHANG Xuan, QIN Fanghong, FENG Jinghang, HU Jiawen, CHEN Chaohong. Study on preparation of pseudo-boehmite from aluminum dross resource treatment[J]. Inorganic Chemicals Industry, 2023, 55(11): 130-138.
表4
响应面方差分析
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 85.77 | 9 | 9.53 | 19.42 | 0.000 4 | ** |
A | 3.52 | 1 | 3.52 | 7.18 | 0.031 5 | * |
B | 14.39 | 1 | 14.39 | 29.33 | 0.001 0 | ** |
C | 1.62 | 1 | 1.62 | 3.30 | 0.112 0 | 不显著 |
AB | 3.69 | 1 | 3.69 | 7.51 | 0.028 9 | * |
AC | 1.78 | 1 | 1.78 | 3.63 | 0.098 3 | 不显著 |
BC | 1.53 | 1 | 1.53 | 3.11 | 0.121 2 | 不显著 |
A2 | 32.75 | 1 | 32.75 | 66.76 | <0.000 1 | ** |
B2 | 11.52 | 1 | 11.52 | 23.48 | 0.001 9 | ** |
C2 | 9.37 | 1 | 9.37 | 19.09 | 0.003 3 | ** |
残差 | 3.43 | 7 | 0.490 6 | |||
失拟项 | 1.62 | 3 | 0.539 0 | 1.19 | 0.420 5 | 不显著 |
纯误差 | 1.82 | 4 | 0.454 3 | |||
总离差 | 89.21 | 16 | ||||
R2=0.961 5 |
1 | 石志平,姜澜,杨洪亮,等.铝灰的回收处理及资源化利用研究现状[J].无机盐工业,2020,52(9):21-25. |
SHI Zhiping, JIANG Lan, YANG Hongliang,et al.Research status of recycling and resource utilization of aluminum dross[J].Inorganic Chemicals Industry,2020,52(9):21-25. | |
2 | MESHRAM A, SINGH K K.Recovery of valuable products from hazardous aluminum dross:A review[J].Resources,Conservation and Recycling,2018,130:95-108. |
3 | SHEN Hanlin, LIU Bo, EKBERG C,et al.Harmless disposal and resource utilization for secondary aluminum dross:A review[J].Science of the Total Environment,2021,760:143968. |
4 | EWAIS E M M, BESISA N H A.Tailoring of magnesium aluminum titanate based ceramics from aluminum dross[J].Materials & Design,2018,141:110-119. |
5 | ZHU Weijun, WU Kangkai, ZHANG Senjing,et al.Zero-waste progress for the synthesis of high-purity β-sialon ceramics from secondary aluminum dross[J].Advanced Engineering Materials,2021,23(4):2001298. |
6 | HONG Jianping, WANG Jun, CHEN Haiyan,et al.Process of aluminum dross recycling and life cycle assessment for Al-Si alloys and brown fused alumina[J].Transactions of Nonferrous Metals Society of China,2010,20(11):2155-2161. |
7 | 胡保国,蒋晨,赵海侠,等.铝灰酸溶法制备聚合氯化铝[J].化工环保,2013,33(4):325-329. |
HU Baoguo, JIANG Chen, ZHAO Haixia,et al.Preparation of polyaluminium chloride from alumina ash by acid dissolution method[J].Environmental Protection of Chemical Industry,2013,33(4):325-329. | |
8 | ADEOSUN S O, AKPAN E I, DADA M O.Refractory characteristics of aluminum dross-kaolin composite[J].JOM,2014,66(11):2253-2261. |
9 | BENKHELIF A, KOLLI M.Synthesis of pure magnesium aluminate spinel(MgAl2O4) from waste aluminum dross[J].Waste and Biomass Valorization,2022,13(5):2637-2649. |
10 | ELSEKNIDY M H, SALMIATON A, SHAFIZAH I NOR,et al.A study on mechanical properties of concrete incorporating aluminum dross,fly ash,and quarry dust[J].Sustainability,2020,12(21):9230. |
11 | ZHANG Yu, NI Hongjun, LV Shuaishuai,et al.Preparation of sintered brick with aluminum dross and optimization of process parameters[J].Coatings,2021,11(9):1039. |
12 | GUO Hongwei, WANG Jun, ZHANG Xiuxia,et al.Study on the extraction of aluminum from aluminum dross using alkali roasting and subsequent synthesis of mesoporous γ-alumina[J].Metallurgical and Materials Transactions B,2018,49(5):2906-2916. |
13 | LV Han, XIE Mingzhuang, SHI Litao,et al.A novel green process for the synthesis of high-whiteness and ultrafine aluminum hydroxide powder from secondary aluminum dross[J].Ceramics International,2022,48(1):953-962. |
14 | LEVIN I, GEMMING T, BRANDON D G.Some metastable polymorphs and transient stages of transformation in alumina[J].Phy- sica Status Solidi (a),1998,166(1):197-218. |
15 | CAI Yuhang, ZHAO Mengmeng, WANG Henti,et al.Synthesis and properties of flame-retardant poly(vinyl alcohol)/pseudo-boehmite nanocomposites with high transparency and enhanced refractive index[J].Polymer Degradation and Stability,2014,99:53-60. |
16 | VAN GARDEREN N, CLEMENS F J, ANEZIRIS C G,et al.Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application[J].Ceramics International,2012,38(7):5481-5492. |
17 | LI Jie, QIAN Linping, HU Liya,et al.Low-temperature hydrogenation of maleic anhydride to succinic anhydride and γ-butyrolactone over pseudo-boehmite derived alumina supported metal (metal=Cu,Co and Ni) catalysts[J].Chinese Chemical Letters,2016,27(7):1004-1008. |
18 | XU Xinhai, ZHANG Shuyang, LI Peiwen,et al.Adsorptive desulfurization of liquid Jet-A fuel at ambient conditions with an improved adsorbent for on-board fuel treatment for SOFC applications[J].Fuel Processing Technology,2014,124:140-146. |
19 | 李凡,杨雨哲,田朋,等.仲丁醇铝水解制备高纯拟薄水铝石[J].无机盐工业,2022,54(7):78-84,104. |
LI Fan, YANG Yuzhe, TIAN Peng,et al.Preparation of high purity pseudo-boehmite by hydrolysis of aluminium sec-butoxide[J].Inorganic Chemicals Industry,2022,54(7):78-84,104. | |
20 | 田朋,李伟,杨雨哲,等.异丙醇铝水解制高纯拟薄水铝石[J].无机盐工业,2022,54(2):54-59. |
TIAN Peng, LI Wei, YANG Yuzhe,et al.Preparation of high purity pseudo-boehmite by hydrolysis of aluminium isopropanol[J].Inorganic Chemicals Industry,2022,54(2):54-59. | |
21 | CAI Weiquan, LI Huiquan, ZHANG Yi.Influences of processing techniques of the H2O2-precipitated pseudoboehmite on the struc-tural and textural properties of γ-Al2O3[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,295(1/2/3):185-192. |
22 | YANG Yang, XU Yanyan, HAN Baozhai,et al.Effects of synthetic conditions on the textural structure of pseudo-boehmite[J].Journal of Colloid and Interface Science,2016,469:1-7. |
23 | REN Xiaojing, LIU Youzhi, MIAO Longxin.Continuous carbonation for synthesis of pseudo-boehmite by using cross-flow rotating packed bed through the reaction of NaAlO2 solution with CO2 gas[J].Nanomaterials,2020,10(2):263. |
24 | 陈建章.基于拟薄水铝石氧化铝气凝胶制备工艺研究[D].湘潭:湖南科技大学,2018. |
CHEN Jianzhang.Study on the preparation process of alumina aerogel based on pseudo-boehmite[D].Xiangtan:Hunan University of Science and Technology,2018. | |
25 | 刘袁李.异丙醇铝水解制备催化用拟薄水铝石和氧化铝[D].大连:大连理工大学,2020. |
LIU Yuanli.Synthesis of catalysis pseudobohmite and alumina from aluminium isopropoxide[D].Dalian:Dalian University of Technology,2020. | |
26 | 罗铃,李平,黄凯,等.NaAlO2硫酸法合成高质量拟薄水铝石[J].过程工程学报,2022,22(12):1710-1718. |
LUO Ling, LI Ping, HUANG Kai,et al.Synthesis of high-qualified pseudo-boehmite by NaAlO2 sulfuric acid method[J].The Chinese Journal of Process Engineering,2022,22(12):1710-1718. | |
27 | 轩晓蝶,刘锰钰,郭静静,等.拟薄水铝石合成及其性能研究进展[J].工业催化,2022,30(6):21-30. |
XUAN Xiaodie, LIU Mengyu, GUO Jingjing,et al.Progresson synthesis and properties of pseudo-boehmite[J].Industrial Catalysis,2022,30(6):21-30. | |
28 | 左少卿,熊晓云,许勐,等.拟薄水铝石胶溶性影响因素的研究进展[J].应用化工,2018,47(6):1250-1253. |
ZUO Shaoqing, XIONG Xiaoyun, XU Meng,et al.Research progress of the factors to impact the dispersion of pseudo-boehmite[J].Applied Chemical Industry,2018,47(6):1250-1253. | |
29 | TRIPATHY A K, MAHALIK S, SARANGI C K,et al.A pyro-hydrometallurgical process for the recovery of alumina from waste aluminium dross[J].Minerals Engineering,2019,137:181-186. |
30 | 朱江凯.兰州铝业回收大修渣减量化及无害化工艺研究[D].兰州:兰州理工大学,2020. |
ZHU Jiangkai.The reduction and harmless process research of recycled SPL of LANZHOU ALUMINUM CO.,LTD[D].Lanzhou:Lanzhou University of Technology,2020. | |
31 | MÄKELÄ M.Experimental design and response surface methodology in energy applications:A tutorial review[J].Energy Conversion and Management,2017,151:630-640. |
32 | MOHAMMED B S, KHED V C, NURUDDIN M F.Rubbercrete mixture optimization using response surface methodology[J].Journal of Cleaner Production,2018,171:1605-1621. |
33 | 刘袁李,沈善文,杨雨哲,等.异丙醇铝控制水解制备高纯拟薄水铝石和多孔氧化铝[J].工业催化,2020,28(1):24-31. |
LIU Yuanli, SHEN Shanwen, YANG Yuzhe,et al.Synthesis of high-purity pseudoboehmite and porous alumina from aluminum isopropoxide[J].Industrial Catalysis,2020,28(1):24-31. | |
34 | WANG Zheming, WALTER E D, SASSI M,et al.The role of surface hydroxyls on the radiolysis of gibbsite and boehmite nanoplatelets[J].Journal of Hazardous Materials,2020,398:122853. |
35 | 高建峰,徐春彦,王建中,等.用偏铝酸钠直接制取高纯拟薄水铝石[J].催化学报,2003,24(7):505-508. |
GAO Jianfeng, XU Chunyan, WANG Jianzhong,et al.Preparation of ultra-pure pseudo-boehmite from sodium meta-aluminate[J].Chinese Journal of Catalysis,2003,24(7):505-508. | |
36 | 曾丰,杨清河,曾双亲.采用NaAlO2-CO2连续中和法制备拟薄水铝石[J].石油学报(石油加工),2015,31(5):1069-1074. |
ZENG Feng, YANG Qinghe, ZENG Shuangqin.Preparation of pseudo-boehmite by continuous neutralization of NaAlO2-CO2 method[J].Acta Petrolei Sinica(Petroleum Processing Section),2015,31(5):1069-1074. | |
37 | 伍艳辉,钱君律,方学兵,等.硝酸法制备拟薄水铝石研究:成胶条件的影响[J].同济大学学报(自然科学版),2003,31(7):878-882. |
WU Yanhui, QIAN Junlü, FANG Xuebing,et al.Preparation of pseudo-boehmite with nitric acid and sodium aluminate:Influences of precipitation conditions[J].Journal of Tongji University,2003,31(7):878-882. | |
38 | 李涛.工业铝醇化—水解制备高纯Al2O3的研究[D].贵阳:贵州大学,2019. |
LI Tao.Preparation of high purity Al2O3 by alcoholization-hydrolysis of industrial aluminum[D].Guiyang:Guizhou University,2019. | |
39 | 赵历,卓民权,龚福忠,等.碳化法制备球霰石碳酸钙微球及形成机理[J].无机盐工业,2021,53(3):38-43. |
ZHAO Li, ZHUO Minquan, GONG Fuzhong,et al.Synthesis of vaterite CaCO3 microspheres by carbonization method and its formation mechanism[J].Inorganic Chemicals Industry,2021,53(3):38-43. | |
40 | TOLEDO-CHÁVEZ G, PANIAGUA-RODRÍGUEZ J C,ZÁRATE-MEDINA J,et al.Reactions analysis during the synthesis of pseudo-boehmite as precursor of gamma-alumina[J].Catalysis Today,2016,271:207-212. |
41 | 张欣,陈建章,唐安山,等.拟薄水铝石胶溶过程研究[J].人工晶体学报,2018,47(11):2393-2397. |
ZHANG Xin, CHEN Jianzhang, TANG Anshan,et al.Research on peptizing process of pseudo-boehmite[J].Journal of Synthetic Crystals,2018,47(11):2393-2397. | |
42 | 李波,邵玲玲.氧化铝、氢氧化铝的XRD鉴定[J].无机盐工业,2008,40(2):54-57. |
LI Bo, SHAO Lingling.Appraisal of alumina and aluminium hydroxide by XRD[J].Inorganic Chemicals Industry,2008,40(2):54-57. | |
43 | 刘滨,杨清河,胡大为,等.高孔体积、大孔径渣油加氢催化材料的开发[J].石油炼制与化工,2021,52(6):6-10. |
LIU Bin, YANG Qinghe, HU Dawei,et al.Preparation of catalytic material with high pore volume and large pore for residue hydrotreating[J].Petroleum Processing and Petrochemicals,2021,52(6):6-10. |
[1] | 崔庚寅, 谢浪, 陆跃贤, 孔德文, 王玲玲. 基于RSM优化玄武岩纤维增强磷石膏基复合材料力学性能[J]. 无机盐工业, 2023, 55(8): 116-123. |
[2] | 董雄伟, 韩凤兰, 华炜, 李茂辉, 安长聪, 黄玉才. 硅锰渣基沸石的合成及其表征[J]. 无机盐工业, 2023, 55(12): 128-132. |
[3] | 付子启, 张程, 盛勇, 纪利俊. 有机溶剂浸取湿法磷酸脱氟渣制备磷酸的研究[J]. 无机盐工业, 2022, 54(7): 129-134. |
[4] | 李凡,杨雨哲,田朋,李伟,宁桂玲. 仲丁醇铝水解制备高纯拟薄水铝石[J]. 无机盐工业, 2022, 54(7): 78-84. |
[5] | 李亚娇,赵艺伟,鞠恺,唐仁龙,李龙清,邵小平,张高锋,任武昂. 基于响应面法的粉煤灰氨含量测定过程浸提条件优化研究[J]. 无机盐工业, 2022, 54(4): 145-151. |
[6] | 李风亭,孔涛,李泽坤,李杰,王颖. 铝灰行业对传统混凝剂行业的冲击分析[J]. 无机盐工业, 2022, 54(2): 1-5. |
[7] | 田朋,李伟,杨雨哲,刘坤吉,徐前进,宁桂玲. 异丙醇铝水解制高纯拟薄水铝石[J]. 无机盐工业, 2022, 54(2): 54-59. |
[8] | 史凯,赵旭,张红智,任轶轩,李晓峰. 硅改性拟薄水铝石合成SAPO-34分子筛的研究[J]. 无机盐工业, 2022, 54(10): 149-154. |
[9] | 蔡彬,邓金珠,檀笑,马若凡,任婷艳,奚蓉. 再生铝工业铝灰渣特性及其贮存环境风险防控[J]. 无机盐工业, 2021, 53(12): 117-121. |
[10] | 石志平,姜澜,杨洪亮,张靖宙,付高峰. 铝灰的回收处理及资源化利用研究现状[J]. 无机盐工业, 2020, 52(9): 21-25. |
[11] | 熊晓云,胡清勋,赵红娟,高雄厚. 氧化铝基质对催化裂化催化剂重油分子裂化性能的影响[J]. 无机盐工业, 2019, 51(8): 83-87. |
[12] | 南军,于群,于海斌,张景成,肖寒,朱金剑,李晓云. 拟薄水铝石新工艺研发及其在加氢精制催化剂中的应用[J]. 无机盐工业, 2019, 51(6): 80-82. |
[13] | 黄继明,刘润清,吴思展,宋娟. 响应面法优化氯化铵焙烧浸出低品位菱锰矿工艺[J]. 无机盐工业, 2019, 51(3): 34-37. |
[14] | 陈 波, 宋兴福, 许妍霞, 孙玉柱, 于建国. 响应面法优化氨碳化-钙转化连续法制备碳酸钙工艺[J]. 无机盐工业, 2016, 48(9): 18-. |
[15] | 李晓云, 于海斌, 孙彦民, 李世鹏, 曾贤君, 隋云乐, 周 鹏. 无机铝盐辅助活性氧化铝水热合成拟薄水铝石[J]. 无机盐工业, 2016, 48(6): 35-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|