[1] |
Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batte-ries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016,1(9).Doi: 10.1038/nenergy.2016.132.
|
[2] |
Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S bat-teries with high energy storage[J]. Nature Materials, 2011,11(1):19-29.
|
[3] |
Manthiram A, Fu Y, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014,114(23):11751-11787.
|
[4] |
Goodenough J B. Electrochemical energy storage in a sustainable mo-dern society[J]. Energy Environmental Science, 2014,7(1):14-18.
|
[5] |
Zhang C, Cui L, Abdolhosseinzadeh S, et al. Two-dimensional mxenes for lithium-sulfur batteries[J]. Info.Mat., 2020,2(4):613-638.
|
[6] |
Liu D, Zhang C, Zhou G, et al. Catalytic effects in lithium-sulfur bat-teries:Promoted sulfur transformation and reduced shuttle effect[J]. Advanced Science, 2018,5(1).Doi: 10.1002/advs. 201700270.
|
[7] |
Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017,29(20).Doi: 10.1002/adma.201601759.
|
[8] |
Zhang Z W, Peng H J, Zhao M, et al. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries:Progress and prospects[J]. Advanced Functional Materials, 2018,28(38).Doi: 10.1002/adfm.201707536.
|
[9] |
Mei S, Jafta C J, Lauermann I, et al. Porous Ti4O7 particles with in terconnected-pore structure as a high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Advanced Functional Materials, 2017,27(26).Doi: 10.1002/adfm.201701176.
|
[10] |
Wei Seh Z, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchi-tecture with internal void space for long-cycle lithium-sulphur bat-teries[J]. Nature Communications, 2013(4).Doi: 10.1038/ncomms2327.
|
[11] |
Shi H, Lv W, Zhang C, et al. Functional carbons remedy the shuttl-ing of polysulfides in lithium-sulfur batteries:Confining,trapping,blocking,and breaking up[J]. Advanced Functional Materials, 2018,28(38).Doi: 10.1002/adfm.201800508.
|
[12] |
Lee B J, Kang T H, Lee H Y, et al. Revisiting the role of conductivi-ty and polarity of host materials for long-life lithium-sulfur bat-tery[J]. Advanced Energy Materials, 2020,10(22).Doi: 10.1002/aenm.201903934.
|
[13] |
Ye C, Jiao Y, Jin H, et al. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries[J]. Ange-wandte Chemie:International Edition, 2018,57(51):16703-16707.
|
[14] |
Chung S H, Luo L, Manthiram A. TiS2-polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithi-um-sulfur batteries[J]. ACS Energy Letters, 2018,3(3):568-573.
|
[15] |
Zhou F, Li Z, Luo X, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S bat-batteries[J]. Nano Letters, 2018,18(2):1035-1043.
|
[16] |
Wang H, Zhang W, Xu J, et al. Advances in polar materials for lit-hium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38).Doi: 10.1002/adfm.201707520.
|
[17] |
罗远辉. 钛化合物[M]. 北京: 冶金工业出版社, 2011:1-7.
|
[18] |
Wu D S, Shi F, Zhou G, et al. Quantitative investigation of polysul-fide adsorption capability of candidate materials for Li-S batteri-es[J]. Energy Storage Materials, 2018,13:241-246.
|
[19] |
黄仲涛. 工业催化剂手册[M]. 北京: 化学工业出版社, 2004:17-31.
|
[20] |
日本钛协会. 钛材料及其应用[M].周连在,译.1版. 北京: 冶金工业出版社, 2008:1-25.
|
[21] |
Zhou G, Tian H, Jin Y, et al. Catalytic oxidation of Li2S on the sur-face of metal sulfides for Li-S batteries[J]. Proceedings of the Na-tional Academy of Sciences of the United States of America, 2017,114(5):840-845.
|
[22] |
Zhang Q F, Wang Y P, Seh Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur bat-teries[J]. Nano Letters, 2015,15(6):3780-3786.
|
[23] |
Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox che-mistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014(5).Doi: 10.1038/ncomms5759.
|
[24] |
Peng H J, Zhang G, Chen X, et al. Enhanced electrochemical kine-tics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2016,55(42):12990-12995.
|
[25] |
Li Z H, He Q, Xu X, et al. A 3D nitrogen-doped graphene/TiN nano-wires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capaci-ty[J]. Advanced Materials, 2018,30(45).Doi: 10.1002/adma.
|
|
201804089.
|
[26] |
Tao X, Wang J, Liu C, et al. Balancing surface adsorption and diffu-sion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016,7.Doi: 10.1038/ncomms.11203.
|
[27] |
Wang D W, Zeng Q, Zhou G, et al. Carbon-sulfur composites for Li-S batteries:Status and prospects[J]. Journal of Materials Che-mistry A, 2013,1(33):9382-9394
|
[28] |
Liang Z, Zheng G Y, Li W Y, et al. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure[J]. ACS Nano, 2014,8(5):5249-5256.
|
[29] |
Salhabi E H M, Zhao J, Wang J, et al. Hollow multi-shelled struc-tural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries[J]. Angewandte Chemie:International Edition, 2019,58(27):9078-9082.
|
[30] |
Li Z, Zhang J, Guan B, et al. A sulfur host based on titanium mono-xide@carbon hollow spheres for advanced lithium-sulfur batteri-es[J]. Nature Communications, 2016(7).Doi: 10.1038/ncomms. 13065.
|
[31] |
Evers S, Yim T, Nazar L F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-Sbattery[J]. The Journal of Physical Chemistry C, 2012,116(37):19653-19658.
|
[32] |
Wu J, Li S, Yang P, et al. S@TiO2 nanospheres loaded on PPy ma-trix for enhanced lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2019,783:279-285
|
[33] |
Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Mate-rials, 2016,28(32):6926-6931.
|
[34] |
Hao Z, Yuan L, Chen C, et al. TiN as a simple and efficient poly-sulfide immobilizer for lithium-sulfur batteries[J]. Journal of Ma-terials Chemistry A, 2016,4(45):17711-17717.
|
[35] |
Hao B, Li H, Lv W, et al. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conver-sion in lithium-sulfur batteries[J]. Nano Energy, 2019,60:305-311.
|
[36] |
Gao X, Zhou D, Chen Y, et al. Strong charge polarization effect en- abled by surface oxidized titanium nitride for lithium-sulfur bat- teries[J]. Communications Chemistry, 2019,2(1):66.
|
[37] |
Zhou F, Song L T, Lu L L, et al. Titanium-carbide-decorated carbon nanofibers as hybrid electrodes for high performance Li-S batteri- es[J]. ChemNanoMat, 2016,2(10):937-941.
|
[38] |
Wang R, Luo C, Wang T, et al. Bidirectional catalysts for liquid-so- lid redox conversion in lithium-sulfur batteries[J]. Advanced Ma- terials, 2020,32(32).Doi: 10.1002/adma.202000315.
|
[39] |
Zhou T, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures en- abling smooth trapping-diffusion-conversion of polysulfides towar- ds ultralong life lithium-sulfur batteries[J]. Energy & Environmen- tal Science, 2017,10(7):1694-1703.
|
[40] |
Zhou T, Zhao Y, Zhou G, et al. An in-plane heterostructure of grap- hene and titanium carbide for efficient polysulfide confinement[J]. Nano Energy, 2017,39:291-296.
|
[41] |
Yuan C, Zhu S, Cao H, et al. Hierarchical sulfur-impregnated hy- drogenated TiO2 mesoporous spheres comprising anatase nanoshee- ts with highly exposed(001) facets for advanced Li-S batteries[J]. Nanotechnology, 2016,27(4).Doi: 10.1088/0957-4484/27/4/045403.
|
[42] |
Ma X Z, Jin B, Wang H Y, et al. S-TiO2 composite cathode materi- als for lithium/sulfur batteries[J]. Journal of Electroanalytical Che- mistry, 2015,736:127-131.
|
[43] |
Li Q, Zhang Z A, Zhang K, et al. Synjournal and electrochemical performance of TiO2-sulfur composite cathode materials for lithi- um-sulfur batteries[J]. Journal of Solid State Electrochemistry, 2013,17(11):2959-2965.
|
[44] |
Xie Keyu, Han Yunzhao, Wei Wenfei, et al. Fabrication of a novel TiO2/S composite cathode for high performance lithium-sulfur bat- teries[J]. RSC Advances, 2015,5(94):77348-77353.
|
[45] |
Lei T, Xie Y, Wang X, et al. TiO2 feather duster as effective polysul- fides restrictor for enhanced electrochemical kinetics in lithium- sulfur batteries[J]. Small, 2017,13(37).Doi: 10.1002/smll.201701013.
|
[46] |
Nowotny J, Alim M A, Bak T, et al. Defect chemistry and defect en- gineering of TiO2-based semiconductors for solar energy conver- sion[J]. Chemical Society Reviews, 2015,44(23):8424-8442.
|
[47] |
Naldoni A, Allieta M, Santangelo S, et al. Effect of nature and loc- ation of defects on bandgap narrowing in black TiO2 nanoparticl- es[J]. Journal of the American Chemical Society, 2012,134(18):7600-7603.
|
[48] |
Tao X Y, Wang J G, Ying Z G, et al. Strong sulfur binding with con- ducting magnéli-phase TinO2n-1 nanomaterials for improving lithi- um-sulfur batteries[J]. Nano Letters, 2014,14(9):5288-5294.
|
[49] |
Zhang Miao, Chen Wei, Xue LanXin, et al. Adsorption-catalysis design in the lithium-sulfur battery[J]. Advanced Energy Materi- als, 2020,10(2):Doi: 10.1002/aenm.201903008.
|
[50] |
Huang S, Wang Z, Von Lim Y, et al. Recent advances in heterost- structure engineering for lithium-sulfur batteries[J]. Advanced Energy Materials, 2021,11(10).Doi: 10.1002/aenm.202003689.
|
[51] |
Zhao M, Li B, Peng H, et al. Lithium-sulfur batteries under lean electrolyte conditions:challenges and opportunities[J]. Angewan- dte Chemie:International Edition, 2020,59.Doi: 10.1002/ange.201909339.
|