[1] |
韩啸, 张成锟, 吴华龙, 等. 锂离子电池的工作原理与关键材料[J]. 金属功能材料, 2021,28(2):37-58.
|
[2] |
刘红锐, 郭奕旋, 张开翔, 等. 一种串联锂离子电池二重能量高实效均衡器研究[J]. 昆明理工大学学报:自然科学版, 2021,36(2):1-12.
|
[3] |
闫雅婧. 锂离子电池用固态电解质的研究现状与展望[J]. 无机盐工业, 2020,52(7):22-25.
|
[4] |
阮丁山, 李斌, 毛林林, 等. 钴酸锂作为锂离子正极材料研究进展[J]. 电源技术, 2020,44(9):1387-1390.
|
[5] |
孙宏达, 周森, 苏畅. 高电压钴酸锂(LCO)正极材料研究现状[J]. 辽宁化工, 2021,50(2):197-200.
|
[6] |
Hun X F, Xu Y. The improved performance of spinel LiMn2O4 catho-de with micro-nanostructured sphere-interconnected-tube morpholo-gy and surface orientation at extreme conditions for lithium-ion bat-teries[J]. Electrochimica Acta, 2020,358.Doi:10.1016/j.electacta.2020.136901.
|
[7] |
焦建超, 朱玉鑫, 彭晓薇, 等. 十二烷基硫酸钠辅助制备高电容性能多孔碳[J]. 新型炭材料, 2021.Doi:10.6023/A21010007.
|
[8] |
Li W, Yang L, Li Y, et al. Ultra-thin AlPO4 layer coated LiNi0.7Co0.15Mn0.15O2 cathodes with enhanced high-voltage and high-temperature performance for lithium-ion half/full batteries[J]. Frontiers in Chemistry, 2020,8.Doi: 10.3389/fchem.2020.00597.
|
[9] |
曲江英, 于志强, 臧云浩, 等. 自组装CoMn2O3.5-RGO微米立方体类Fenton催化剂及其染料降解性能[J]. 新型炭材料, 2019,34(6):539-545.
|
[10] |
Liu P, Zhang Y, Dong P, et al. Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping[J]. Journal of Alloys and Compounds, 2021,860.Doi:10.1016/j.jallcom.2020.157909.
|
[11] |
崔肖, 张正富, 王劲松, 等. 金属有机骨架及其衍生结构在锂硫电池中的应用[J]. 能源研究与管理, 2021(1):104-109,117.
|
[12] |
李丽波, 单宇航. 石墨烯及其复合材料在锂硫电池中抑制穿梭效应的应用进展(英文)[J]. 新型炭材料, 2021,36(2):336-349.
|
[13] |
张茜, 徐彦, 蔡泽玮, 等. PDA源多孔碳的制备及其电化学性能[J/OL]. 浙江理工大学学报:自然科学版, 2021. https://kns.cnki.net/kcms/detail/33.1338.TS.20210330.1148.004.html.
|
[14] |
Cai W L, Song Y Z, Fang Y T, et al. Defect engineering on carbon black for accelerated Li-S chemistry[J]. Nano Research, 2020,13(12):3315-3320.
|
[15] |
刘勇志, 王勇, 王聪伟, 等. 石墨烯应用于锂硫电池的研究进展[J]. 新型炭材料, 2020,35(1):1-11.
|
[16] |
田月茹, 张露, 顾元香. 用作锂电池负极材料的多孔生物质碳的合成及表征[J]. 广州化工, 2021,49(6):45-47.
|
[17] |
王学慧, 张文哲, 王焕磊, 等. 先进碳材料在钾离子电池中的应用[J]. 硅酸盐学报, 2021.Doi:10.14062/j.issn.0454-5648.20200672.
|
[18] |
武志红, 蒙真真, 邓悦, 等. 分级多孔碳复合吸波材料研究进展[J]. 硅酸盐学报, 2021.Doi:10.14062/j.issn.0454-5648.20200606.
|
[19] |
张魏栋, 范磊, 朱守圃, 等. 高容量锂硫电池近期研究进展[J]. 储能科学与技术, 2017,6(3):534-549.
|
[20] |
Knox J H, Kaur B, Millward G R. Structure and performance of por-ous graphitic carbon in liquid chromatography[J]. Journal of Chro-matography A, 1986,352:3-25.
|
[21] |
Wang R X, Wang K L, Gao S, et al. Rational design of yolk-shell silicon dioxide@hollow carbon spheres as advanced Li-S cathode hosts[J]. Nanoscale, 2017,9(39):14881-14887.
|
[22] |
Wang B, Wang G, Wang H, et al. Hierarchically porous carbon na-nofibers encapsulating carbon-coated mini hollow FeP nanoparti-cles for high performance lithium and sodium ion batteries[J]. ChemNanoMat, 2018,4(9):924-935.
|
[23] |
Jiang H, Liu X C, Wu Y, et al. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries[J]. Angewandte Chemie, 2018,57(15):3916-3921.
|
[24] |
Zhu W, Lei D, Li Y, et al. Hierarchical,nitrogenous hollow carbon spheres filled with porous carbon nanosheets for use as efficient sulfur hosts for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2020,836.Doi:10.1016/j.jallcom.2020.155295.
|
[25] |
Zhang F, Zong S, Zhang Y, et al. Preparation of hollow mesoporous carbon spheres by pyrolysis-deposition using surfactant as carbon precursor[J]. Journal of Power Sources, 2021.Doi:10.1016/j.jpo-wsour.2020.229274.
|
[26] |
Liang C, Hong K, Guiochon G A, et al. Synjournal of a large-scale hi-ghly ordered porous carbon film by self-assembly of block copoly-mers[J]. Angewandte Chemie International Edition, 2004,43(43):5785-5789.
|
[27] |
Chu P P, and Wu H D. Solid state NMR studies of hydrogen bond-ing network formation of novolac type phenolic resin and poly(ethylene oxide) blend[J]. Polymer, 1999,41(1):101-109.
|
[28] |
Nita C, Bensafia M, Vaulot C, et al. Insights on the synjournal mech-anism of green phenolic resin derived porous carbons via a salt-soft templating approach[J]. Carbon, 2016,109:227-238.
|
[29] |
Fei H F, Li W H, Bhardwaj A, et al. Ordered nanoporous carbons with broadly tunable pore size using bottlebrush block copolymer templates[J]. Journal of the American Chemical Society, 2019,141(42):17006-17014.
|
[30] |
Liu X, Antonietti M. Molten salt activation for synjournal of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014,69:460-466.
|
[31] |
陶颖卿, 孔振凯, 魏艳菊, 等. 中孔炭微球/MoS2/S复合正极材料的制备及其电化学性能[J]. 新型炭材料, 2019,34(4):349-357.
|
[32] |
徐莹, 高荣, 金士威. 有序介孔碳和活性炭对阿莫西林的吸附研究[J]. 无机盐工业, 2020,52(10):140-144.
|
[33] |
Guan L, Hu H, Li L Q, et al. Intrinsic defect-rich hierarchically po-rous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides[J]. ACS Nano, 2020,14(5):6222-6231.
|
[34] |
Xu J X, Du G, Xie L, et al. Three-dimensional walnut-like,hierar-chically nanoporous carbon microspheres:One-pot synjournal,ac-tivation,and supercapacitive performance[J]. ACS Sustainable Chemistry & Engineering, 2020,8(21):8024-8036.
|
[35] |
张蒙蒙. 多孔碳材料的制备及其在锂硫电池中的应用[D]. 西安:西安理工大学, 2020.
|
[36] |
Rehman S, Guo S, Hou Y. Rational design of Si/SiO2 @hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery[J]. Advanced materials, 2016,28(16):3167-3172.
|
[37] |
Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise be-tter lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012,134(45):18510-18513.
|
[38] |
Jin F Y, Xiao S, Lu L J, et al. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries[J]. Nano Letters, 2016,16(1):440-447.
|
[39] |
Du Y, Huang R K, Lin X D, et al. Template-free preparation of hi-erarchical porous carbon nanosheets for lithium-sulfur battery[J]. Langmuir, 2020,36(48):14507-14513.
|
[40] |
Tang H, Li W, Pan L, et al. A Robust,Freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries[J]. Advanced Functional Materials, 2019,29(30).Doi:10.1002/adfm.201901907.
|
[41] |
Wei C H, Tian M, Wang M L, et al. Universal in situ crafted MOx- MXene heterostructures as heavy and multifunctional hosts for 3D- printed Li-S batteries[J]. ACS Nano, 2020,14(11):16073-16084.
|
[42] |
Liu R Q, Liu W H, Bu Y L, et al. Conductive porous laminated va-nadium nitride as carbon-free hosts for high-loading sulfur cathod-es in lithium-sulfur batteries[J]. ACS Nano, 2020,14(12):17308-17320.
|
[43] |
Li B Y, Su Q M, Yu L T, et al. Tuning the band structure of MoS2 via Co9S8@MoS2 core-shell structure to boost catalytic activity for lithium-sulfur batteries[J]. ACS Nano, 2020,14(12):17285-17294.
|
[44] |
Wu H, Tang Q, Fan H, et al. Dual-confined and hierarchical-porous graphene/C/SiO2 hollow microspheres through spray drying appro-ach for lithium-sulfur batteries[J]. Electrochimica Acta, 2017,255:179-186.
|
[45] |
Wang S Z, Chen H Y, Liao J X, et al. Efficient trapping and cataly-tic conversion of polysulfides by VS4 nanosites for Li-S batteri-es[J]. ACS Energy Letters, 2019,4(3):755-762.
|