| [1] | Wu J M, Chen Y, Pan L, et al. Multi-layer monoclinic BiVO4,with oxygen vacancies and V4+,species for highly efficient visible-light photoelectrochemical applications[J]. Applied Catalysis B:Environmental, 2018,221:187-195. | 
																													
																						| [2] | Liu M, Yu Y, Zhang W. A non-enzymatic hydrogen peroxide photoelectrochemical sensor based on a BiVO4 electrode[J]. Electroanalysis, 2016,29(1):305-311. | 
																													
																						| [3] | Kim T W, Choi K S. Nanoporous BiVO4 Photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014,343(6174):990-994. | 
																													
																						| [4] | Gong H, Freudenberg N, Nie M, et al. BiVO4 photoanodes for water splitting with high injection efficiency,deposited by reactive magnetron co-sputtering[J]. AIP Advances, 2016,6(4):045108. | 
																													
																						| [5] | Wang L, Gu X, Zhao Y, et al. Enhanced photoelectrochemical prformance by doping Mo into BiVO4 lattice[J]. Journal of Materials Science:Materials in Electronics, 2018,29(22):19278-19286. | 
																													
																						| [6] | Lee M G, Jin K, Kwon K C, et al. Efficient water splitting cascade photoanodes with ligand-engineered MnO cocatalysts[J]. Advanced Science, 2018,5(10):1800727. | 
																													
																						| [7] | Marathey P, Pati R K, Mukhopadhyay I, et al. Effective photocurrent enhancement in nanostructured CuO by organic dye sensitization:studies on charge transfer kinetics[J]. The Journal of Physical Chemistry C, 2018,122(7):3690-3699. | 
																													
																						| [8] | Zheng J Y, Song G, Kim C W, et al. Facile preparation of p-CuO and p-CuO/n-CuWO4 junction thin films and their photoelectro-chemical properties[J]. Electrochimica Acta, 2012,69:340-344. | 
																													
																						| [9] | Zhao W, Wang Y, Yang Y, et al. Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction:preparation,characterization,and photocatalytic properties[J]. Applied Catalysis B: Environmental, 2012,115:90-99. | 
																													
																						| [10] | 张聪, 冉建华, Felix Y T, 等. CuO/BiVO4催化剂制备及其可见光降解亚甲基蓝的研究[J]. 武汉纺织大学学报, 2015,28(6):39-44. | 
																													
																						| [11] | Chang X, Wang T, Zhang P, et al. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes[J]. Journal of the American Chemical Society, 2015,137(26):8356-8359. | 
																													
																						| [12] | Hosseini S G, Safshekan S. Synjournal,characterization and application of BiVO4 photoanode for photoelectrochemical oxidation of chlorate[J]. Chinese Journal of Catalysis, 2017,38(4):710-716. | 
																													
																						| [13] | 吕军军, 李明愉, 曾庆轩. 草酸铜及纳米氧化铜的制备与表征[J]. 火炸药学报, 2011,34(1):86-90. | 
																													
																						| [14] | Xiang H, Long Y, Yu X, et al. A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning[J]. CrystEngComm, 2011,13(15):4856-4860. |