Inorganic Chemicals Industry ›› 2023, Vol. 55 ›› Issue (1): 1-14.doi: 10.19964/j.issn.1006-4990.2022-0602
• Development and utilization of lithium resources • Next Articles
YU Jianguo(),SUN Qing,QIU Shengbo,ZHANG Yiren,CHEN Jun
Received:
2022-10-12
Online:
2023-01-10
Published:
2023-01-17
CLC Number:
YU Jianguo,SUN Qing,QIU Shengbo,ZHANG Yiren,CHEN Jun. Lithium resources development supporting national new energy strategy development[J]. Inorganic Chemicals Industry, 2023, 55(1): 1-14.
Table 1
New processes of lithium extraction from spodumene"
方法 | w (Li2O)/% | 具体工艺 | 锂提 取率/% |
---|---|---|---|
氟 化 法 | 4.31[ | 矿+萤石(CaF2)+H2SO4焙烧(127 ℃→227 ℃)→水浸 | 95.7 |
5.51[ | 矿+HF+H2SO4浸出(100 ℃)→水浸 | 96 | |
7.03[ | 转型焙烧→HF浸出(7% HF,75 ℃) | >90 | |
7.03[ | 转型焙烧→HF浸出(4% HF,35 ℃) | 88 | |
7.03[ | 转型焙烧→NaF焙烧(600 ℃)→水 洗→H2SO4浸出 | 90 | |
3.01[ | 矿+NaF机械活化→H2SO4浸出(90 ℃) | 81.2±3.0 | |
7.54[ | 矿+NH4HF2焙烧(157 ℃)→水浸→H2SO4浸出 | 96.45±3.68 | |
氯 化 法 | 7.2[ | 转型焙烧→Cl2焙烧(1 100 ℃) | 约100 |
7.2[ | 转型焙烧→CaCl2焙烧(900 ℃)→水浸 | 90.2 | |
4.5[ | 矿+CaCl2+MgCl2焙烧(1 150 ℃)→水浸 | >96 | |
4.61[ | 矿+CaCl2焙烧(1 000 ℃)→水浸 | 90 | |
盐/ 碱 焙 烧 法 | 5.66[ | 矿+Na2SO4机械活化→焙烧(1 000 ℃)→水浸 | 92 |
7.5±0.15[ | 矿+K2SO4焙烧(1 050 ℃)→水浸 | 96.3±2 | |
5.64[ | 矿+NaOH焙烧(320 ℃)→水浸→H2SO4浸出 | 71(水浸) 88(总) | |
盐/ 碱 水 热 法 | 6.17[ | 转型焙烧→Na2SO4+CaO/NaOH浸出(230 ℃) | 93.30(CaO) 90.70(NaOH) |
7.0/ 5.65[ | 转型焙烧→NaCl/NaCl+NaOH浸出(200 ℃) | >93 | |
5.53[ | 矿+NaOH浸出(250 ℃) | 95.8 | |
4.76[ | 矿+CaO+NaOH浸出(250 ℃) | 93.3 | |
5.28[ | 矿+NaOH浸出(250 ℃)→H2SO4浸出 | 87.3 | |
6.02[ | 矿+KOH浸出(250 ℃)→H2SO4浸出 | 89.9 | |
4.30[ | 转型焙烧→水淬冷却→NaOH浸出(100 ℃) | 93.0 | |
6.05[ | 转型焙烧→Na2CO3浸出(225 ℃) | >96 | |
5.55[ | 转型焙烧→K2CO3浸出(240 ℃) | 96.43 | |
微生物法 | —[ | 真菌Penicillium notatum,Aspergillus niger;硫杆菌Thiobacillus thiooxidans;细菌Bacillus mucilaginosus | — |
—[ | 霉菌Aspergillus niger,Penicillium purpurogenum;酵母菌Rhodotorula rubra | — |
1 | Mineral commodity summaries 2022[R].Reston,VA:U.S.Geological Survey,2022. |
2 | 万青珂, 张洋, 郑诗礼, 等. 废旧磷酸铁锂正极粉磷酸浸出过程的优化及宏观动力学[J].化工进展, 2020, 39(6):2495-2502. |
WAN Qingke, ZHANG Yang, ZHENG Shili, et al. Process optimization and kinetics for leaching spent lithium iron phosphate cathode powder by phosphate acid[J].Chemical Industry and Engineering Progress, 2020, 39(6):2495-2502. | |
3 |
YELATONTSEV D, MUKHACHEV A. Processing of lithium ores:Industrial technologies and case studies-A review[J].Hydrometallurgy, 2021, 201.Doi:10.1016/j.hydromet.2021.105578.
doi: 10.1016/j.hydromet.2021.105578 |
4 | SALAKJANI N K, SINGH P, NIKOLOSKI A N. Production of lithium-A literature review part 1:Pretreatment of spodumene[J].Mineral Processing and Extractive Metallurgy Review, 2020, 41(5):335-348. |
5 | SALAKJANI N K, SINGH P, NIKOLOSKI A N. Mineralogical transformations of spodumene concentrate from Greenbushes,Western Australia.Part 1:Conventional heating[J].Minerals Engineering, 2016, 98:71-79. |
6 |
ABDULLAH A A, OSKIERSKI H C, ALTARAWNEH M, et al. Phase transformation mechanism of spodumene during its calcination[J].Minerals Engineering, 2019, 140.Doi:10.1016/j.mineng.2019.105883.
doi: 10.1016/j.mineng.2019.105883 |
7 | 周峰, 王计江, 高建勤, 等. 锂辉石隧道窑焙烧工艺可行性研究[J].江西化工, 2019(5):84-86. |
8 |
GASAFI E, PARDEMANN R. Processing of spodumene concentrates in fluidized-bed systems[J].Minerals Engineering, 2020, 148.Doi:10.1016/j.mineng.2020.106205.
doi: 10.1016/j.mineng.2020.106205 |
9 | PELTOSAARI O, TANSKANEN P, HEIKKINEN E P, et al. α→γ→β-phase transformation of spodumene with hybrid microwave and conventional furnaces[J].Minerals Engineering, 2015, 82:54-60. |
10 | SALAKJANI N K, NIKOLOSKI A N, SINGH P. Mineralogical transformations of spodumene concentrate from Greenbushes,Western Australia.Part 2:Microwave heating[J].Minerals Engineering, 2017, 100:191-199. |
11 |
REZAEE M, HAN Shihua, SAGZHANOV D, et al. Microwave-assisted calcination of spodumene for efficient,low-cost and environmentally friendly extraction of lithium[J].Powder Technology, 2022, 397.Doi:10.1016/j.powtec.2021.11.036.
doi: 10.1016/j.powtec.2021.11.036 |
12 | BRAGA P, FRANÇA S, NEUMANN R, et al. Alkaline process for extracting lithium from spodumene[C]//Proceedings of the 11th International Seminar on Process Hydrometallurgy-Hydroproce- ss.Santiago,Chile,2019:1-9. |
13 | 涂弢, 郭浩, 程华金, 等. 锂辉石-氧化钙烧结法提锂的物相重构与动力学[J].化工进展, 2020, 39(9):3478-3486. |
TU Tao, GUO Hao, CHENG Huajin, et al. Phase reconstruction and kinetics of lithium extraction by spodumenecalcium oxide sintering process[J].Chemical Industry and Engineering Progress, 2020, 39(9):3478-3486. | |
14 | FOSU A Y, KANARI N, BARTIER D, et al. Novel extraction route of lithium from α-spodumene by dry chlorination[J].RSC Advances, 2022, 12(33):21468-21481. |
15 | ELLESTAD R B, LEUTE K M. Method of extracting lithium values from spodumene ores:US, 2516109 A[P].1950-07-25. |
16 | RESENTERA A C, ESQUIVEL M R, RODRIGUEZ M H. Low-temperature lithium extraction from α-spodumene with NH4HF2:Modeling and optimization by least squares and artificial neural networks[J].Chemical Engineering Research and Design, 2021, 167:73-83. |
17 | KUANG Ge, CHEN Zhibin, GUO Hui, et al. Lithium extraction mechanism from α-spodumene by fluorine chemical method[J].Advanced Materials Research, 2012, 524-527:2011-2016. |
18 |
GUO Hui, KUANG Ge, WANG Haidong, et al. Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid[J].Minerals, 2017, 7(11).Doi:10.3390/min7110205.
doi: 10.3390/min7110205 |
19 | ROSALES G D, RUIZ M D C, RODRIGUEZ M H. Novel process for the extraction of lithium from β-spodumene by leaching with HF[J].Hydrometallurgy, 2014, 147-148:1-6. |
20 |
ROSALES G, RUIZ M, RODRIGUEZ M. Study of the extraction kinetics of lithium by leaching β-spodumene with hydrofluoric acid[J].Minerals, 2016, 6(4).Doi:10.3390/min6040098.
doi: 10.3390/min6040098 |
21 | ROSALES G D, RESENTERA A C J, GONZALEZ J A, et al. Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching[J].Chemical Engineering Research and Design, 2019, 150:320-326. |
22 |
ROSALES G D, RESENTERA A C J, WUILLOUD R G, et al. Optimization of combined mechanical activation-leaching parameters of low-grade α-spodumene/NaF mixture using response surface methodology[J].Minerals Engineering, 2022, 184.Doi:10.1016/j.mineng.2022.107633.
doi: 10.1016/j.mineng.2022.107633 |
23 | BARBOSA L I, VALENTE G, OROSCO R P, et al. Lithium extraction from β-spodumene through chlorination with chlorine gas[J].Minerals Engineering, 2014, 56:29-34. |
24 | BARBOSA L I, GONZÁLEZ J A, RUIZ M D C. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride[J].Thermochimica Acta, 2015, 605:63-67. |
25 | BRAGA P F A, FRANÇA S C A, PINTO C P, et al. Recovery of lithium from spodumene by chlorination roasting[C]//International Mineral Processing Congress.Cape Town,South Africa,2020:2-11. |
26 |
SETOUDEH N, NOSRATI A, WELHAM N J. Phase changes in mechanically activated spodumene-Na2SO4 mixtures after isothermal heating[J].Minerals Engineering, 2020, 155.Doi:10.1016/j.mineng.2020.106455.
doi: 10.1016/j.mineng.2020.106455 |
27 |
NCUBE T, OSKIERSKI H C, SENANAYAKE G, et al. Sustainable treatment of spodumene:Extraction of lithium from spodumene through roasting with potassium sulfate[J].SSRN, 2022.Doi:10.2139/ssrn.4155153.
doi: 10.2139/ssrn.4155153 |
28 | HAN Shihua, SAGZHANOV D, PAN Jinhe, et al. Direct extraction of lithium from α-spodumene by salt roasting-leaching process[J].ACS Sustainable Chemistry & Engineering, 2022, 10(40):13495-13504. |
29 | KUANG Ge, LIU Yu, LI Huan, et al. Extraction of lithium from β-spodumene using sodium sulfate solution[J].Hydrometallurgy, 2018, 177:49-56. |
30 |
ALHADAD M F, OSKIERSKI H C, CHISCHI J, et al. Sustainable production of lithium chloride from Β-spodumene:Keatite and analcime processes[J].SSRN, 2022.Doi:10.2139/ssrn.4141972.
doi: 10.2139/ssrn.4141972 |
31 | XING Peng, WANG Chengyan, ZENG Lei, et al. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene[J].ACS Sustainable Chemistry & Engineering, 2019, 7(10):9498-9505. |
32 |
SONG Yunfeng, ZHAO Tianyu, HE Lihua, et al. A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate[J].Hydrometallurgy, 2019, 189.Doi:10.1016/j.hydromet.2019.105141.
doi: 10.1016/j.hydromet.2019.105141 |
33 |
QIU Shengbo, LIU Chenglin, YU Jianguo. Conversion from α-spodumene to intermediate product Li2SiO3 by hydrothermal alkaline treatment in the lithium extraction process[J].Minerals Engineering, 2022, 183.Doi:10.1016/j.mineng.2022.107599.
doi: 10.1016/j.mineng.2022.107599 |
34 | QIU Shengbo, ZHU Yue, JIANG Youfa, et al. Kinetics and mechanism of lithium extraction from α-spodumene in potassium hydroxide solution[J].Industrial & Engineering Chemistry Research, 2022, 61(41):15103-15113. |
35 | YANG Hui, MA Baozhong, LV Yingwei, et al. Novel technology for synergistic extraction of Li and Rb from a complex lithium concentrate[J].ACS Sustainable Chemistry & Engineering, 2022, 10(36):12030-12040. |
36 | 陈亚, 廖婷, 陈白珍, 等. 纯碱压煮法从锂辉石中提取锂的研究[J].有色金属:冶炼部分, 2011(9):21-23, 32. |
CHEN Ya, LIAO Ting, CHEN Baizhen, et al. Extraction of lithium from spodumene by sodium carbonate autoclave proce-ss[J].Nonferrous Metals:Extractive Metallurgy, 2011(9):21-23, 32. | |
37 | 姚文贵, 马鸿文, 刘梅堂, 等. 锂辉石水热钾碱分解制取碳酸锂相平衡模拟与优化试验[J].有色金属:冶炼部分, 2021(4):28-35. |
YAO Wengui, MA Hongwen, LIU Meitang, et al. Preparing lithium carbonate via hydrothermal of spodumene and potash:Phase equilibrium simulation and optimization experiment[J].Nonferrous Metals:Extractive Metallurgy, 2021(4):28-35. | |
38 | KARAVAĬKO G I, KRUTSKO V S, MEL'NIKOVA E O, et al. Role of microorganisms in the destruction of spodumene[J].Mikrobiologiia, 1980, 49(3):547-551. |
39 | REZZA I, SALINAS E, CALVENTE V, et al. Extraction of lithium from spodumene by bioleaching[J].Letters in Applied Microbiology, 1997, 25(3):172-176. |
40 | REZZA I, SALINAS E, ELORZA M, et al. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms[J].Process Biochemistry, 2001, 36(6):495-500. |
41 | TIIHONEN M, HAAVANLAMMI L, KINNUNEN S, et al. Outotec lithium hydroxide process-a novel direct leach process for the production of battery grade lithium hydroxide monohydrate form calcined spodumene[C]//Proceedings of ALTA 2019 Lithium Processing Sessions Including Novel Lithium Processes Forum.Australia,2019:231. |
42 | MARIA A D, ELGHOUL Z, ACKER K V. Environmental assessment of an innovative lithium production process[J].Procedia CIRP, 2022, 105:672-677. |
43 | GRIFFITH C S, GRIFFIN A C, ROPER A, et al. Development of SiLeach® technology for the extraction of lithium silicate minerals[M]//Extraction 2018.Cham,Switzerland:Springer, 2018:2235-2245. |
44 |
ZHANG Ye, HU Yuehua, WANG Li, et al. Systematic review of lithium extraction from salt-lake brines via precipitation appro-aches[J].Minerals Engineering, 2019, 139.Doi:10.1016/j.mineng.2019.105868.
doi: 10.1016/j.mineng.2019.105868 |
45 | SWAIN B. Recovery and recycling of lithium:A review[J].Separation and Purification Technology, 2017, 172:388-403. |
46 | 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J].化工学报, 2022, 73(2):481-503. |
JIANG Chenxiao, CHEN Binglun, ZHANG Dongyu, et al. Progress in isolating lithium resources from China salt lake brine[J].CIESC Journal, 2022, 73(2):481-503. | |
47 | 马珍. 盐湖锂资源高效分离提取技术研究进展[J].无机盐工业, 2022, 54(10):22-29. |
MA Zhen. Research progress on efficient separation and extraction technology of lithium resources in salt lakes[J].Inorganic Chemicals Industry, 2022, 54(10):22-29. | |
48 | 高峰, 乜贞, 郑绵平. 兑卤法从硫酸钠亚型盐湖卤水中制备碳酸锂[J].高校化学工程学报, 2018, 32(2):472-477. |
GAO Feng, NIE Zhen, ZHENG Mianping. Preparation of lithium carbonate from sodium sulfate subtype brine by a brine mixing method[J].Journal of Chemical Engineering of Chinese Universities, 2018, 32(2):472-477. | |
49 | 郝勇, 张启海, 李广汉, 等. 西藏结则茶卡和龙木错盐湖卤水协同提锂研究[J].无机盐工业, 2013, 45(6):27-29. |
HAO Yong, ZHANG Qihai, LI Guanghan, et al. Synergistic lithium extraction from mixed brines of Jiezechaka and Longmucuo salt lakes in Tibet[J].Inorganic Chemicals Industry, 2013, 45(6):27-29. | |
50 | 赵元艺. 西藏扎布耶盐湖碳酸锂提取盐田工艺及其相关技术研究[D].北京:中国地质科学院, 2000. |
ZHAO Yuanyi. A study on solar pan and its related technologies for extracting lithium carborlate(Li2CO3) from brine of zabuye saline lake,Tibet[D].Beijing:Chinese Academy of Geological Sciences, 2000. | |
51 | 余疆江, 郑绵平, 唐力君, 等. 碳酸盐型卤水实验室模拟提锂和太阳池提锂的对比[J].化工进展, 2013, 32(6):1248-1252, 1260. |
YU Jiangjiang, ZHENG Mianping, TANG Lijun, et al. Comparative study of lithium extraction from the carbonate brine between solar pond and laboratory simulation experiment[J].Chemical Industry and Engineering Progress, 2013, 32(6):1248-1252, 1260. | |
52 | VOLKHIN V V. Ion-exchange properties of mixed ferrocyanides of some transition metals[J].Newsletters of USSR Academy of Sciences:Inorganic Materials, 1971, 7(1):77-81. |
53 | XU Xin, CHEN Yongmei, WAN Pingyu, et al. Extraction of lithium with functionalized lithium ion-sieves[J].Progress in Materials Science, 2016, 84:276-313. |
54 | 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J].化工学报, 2018, 69(1):141-155. |
LIU Dongfan, SUN Shuying, YU Jianguo. Research and development on technique of lithium recovery from salt lake brine[J].CIESC Journal, 2018, 69(1):141-155. | |
55 | FENG Qi, KANOH H,OOI K. Manganese oxide porous cryst-als[J].Journal of Materials Chemistry, 1999, 9(2):319-333. |
56 | 程梦茹, 王舒, 宫飞祥, 等. 锰系锂离子筛的制备及成型方式研究进展[J/OL].盐湖研究, 2022. |
CHENG Mengru, WANG Shu, GONG Feixiang, et al. Research progress on preparation and formating method of manganese series lithium ion sieve[J/OL].Journal of Salt Lake Research, 2022. | |
57 | OOI K, MIYAI Y, SAKAKIHARA J. Mechanism of lithium(1+) insertion in spinel-type manganese oxide.Redox and ion-exchange reactions[J].Langmuir, 1991, 7(6):1167-1171. |
58 | SHEN Xiangmu, CLEARFIELD A. Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxi-de[J].Journal of Solid State Chemistry, 1986, 64(3):270-282. |
59 |
LIU Dongfan, SUN Shuying, YU Jianguo. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials[J].Chemical Engineering Journal, 2019, 377.Doi:10.1016/j.cej.2018.08.211.
doi: 10.1016/j.cej.2018.08.211 |
60 | LIU Dongfan, SUN Shuying, YU Jianguo. Electrochemical and adsorption behaviour of Li+,Na+,K+,Ca2+,and Mg2+ in LiMn2O4/λ-MnO2 structures[J].The Canadian Journal of Chemical Engineering, 2018, 97:1589-1595. |
61 | GAO Aolei, SUN Zhenhua, LI Shaopeng, et al. The mechanism of manganese dissolution on Li1.6Mn1.6O4 ion sieves with HCl[J].Dalton Transactions, 2018, 47(11):3864-3871. |
62 |
ZHANG Guotai, ZHANG Jingze, ZHOU Yuan, et al. Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance[J].Colloids and Surfaces A:Phy-
doi: 10.1016/j.colsurfa.2019.123950 |
sicochemical and Engineering Aspects,2019, 583.Doi:10.1016/j.colsurfa.2019.123950.
doi: 10.1016/j.colsurfa.2019.123950 |
|
63 | RYU T, SHIN J, GHOREISHIAN S M, et al. Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite[J].Hydrometallurgy, 2019, 184:22-28. |
64 |
QIAN Fangren, ZHAO Bing, GUO Min, et al. Enhancing the Li+ adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe,Co doped[J].Hydrometallurgy, 2020, 193.Doi:10.1016/j.hydromet.2020.105291.
doi: 10.1016/j.hydromet.2020.105291 |
65 | YUAN Junsheng, YIN Hengbo, JI Zhiyong, et al. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate[J].Industrial & Engineering Chemistry Research, 2014, 53(23):9889-9896. |
66 | CHITRAKAR R, MAKITA Y,OOI K,et al. Lithium recovery from salt lake brine by H2TiO3 [J].Dalton Transactions:Cambridge, England,2014, 43(23):8933-8939. |
67 | VIJAYAKUMAR M, KERISIT S, YANG Zhenguo, et al. Combined 6,7Li NMR and molecular dynamics study of Li diffusion in Li2TiO3 [J].The Journal of Physical Chemistry C, 2009, 113(46):20108-20116. |
68 | HE Gang, ZHANG Liyuan, ZHOU Dali, et al. The optimal condition for H2TiO3-lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design[J].Ionics, 2015, 21(8):2219-2226. |
69 | KANG H W, PARK S B. Effects of Mo sources on Mo doped SrTiO3 powder prepared by spray pyrolysis for H2 evolution under visible light irradiation[J].Materials Science and Engineering:B, 2016, 211:67-74. |
70 | WANG Shulei, ZHENG Shili, WANG Zheming, et al. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves[J].Chemical Engineering Journal, 2018, 332:160-168. |
71 | WANG Shulei, ZHANG Min, ZHANG Ying, et al. High adsorption performance of the Mo-doped titanium oxide sieve for lithium ions[J].Hydrometallurgy, 2019, 187:30-37. |
72 | ISUPOV V P, KOTSUPALO N P, NEMUDRY A P, et al. Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions[J].Studies in Surface Science and Catalysis, 1999, 120:621-652. |
73 | WILLIAMS G R, NORQUIST A J, O'HARE D. Time-resolved,in situ X-ray diffraction studies of staging during phosphonic acid intercalation into[LiAl2(OH)6]Cl·H2O[J].Chemistry of Materials, 2004, 16(6):975-981. |
74 | TARASOV K A, ISUPOV V P, CHUPAKHINA L E, et al. A time resolved,in situ X-ray diffraction study of the de-intercalation of anions and lithium cations from[LiAl2(OH)6] n X·qH2O(X=Cl–,Br–,NO3 –,SO4 2–)[J].Journal of Materials Chemistry, 2004, 14(9):1443-1447. |
75 | PARANTHAMAN M P, LI Ling, LUO Jiaqi, et al. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents[J].Environmental Science & Technology, 2017, 51(22):13481-13486. |
76 | HU Fang, LIN Sen, LI Ping, et al. Quantitative effects of desorption intensity on structural stability and readsorption performance of lithium/aluminum layered double hydroxides in cyclic Li+ extraction from brines with ultrahigh Mg/Li ratio[J].Industrial & Engineering Chemistry Research, 2020, 59:13539-13548. |
77 | LEE J M, BAUMAN W C. Recovery of lithium from brines:US, 4116856 A[P].1978-09-26. |
78 | 李杰. 铝盐锂吸附剂制备工艺及吸附性能研究[D].成都:成都理工大学, 2011. |
LI Jie. Studies on the synthesis of aluminum salt lithium-adsorbent and its adsorptive property[D].Chengdu:Chengdu University of Technology, 2011. | |
79 |
ZHONG Jing, LIN Sen, YU Jianguo. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines[J].Desalination, 2021, 505.Doi:10.1016/j.desal.2021.114983.
doi: 10.1016/j.desal.2021.114983 |
80 | ZHONG Jing, LIN Sen, YU Jianguo. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J].Journal of Colloid and Interface Science, 2020, 572:107-113. |
81 |
ZHONG Jing, LIN Sen, YU Jianguo. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al-LDHs adsorbent[J].Separation and Purification Technology, 2021, 256.Doi:10.1016/j.seppur.2020.117780.
doi: 10.1016/j.seppur.2020.117780 |
82 | 张瑞, 钟静, 林森, 等. 盐湖铝系提锂吸附剂成型条件的影响研究[J].化工学报, 2021, 72(12):6291-6297. |
ZHANG Rui, ZHONG Jing, LIN Sen, et al. Study on the influence of granulation conditions on Li/Al-LDHs for lithium recovery from low grade brine[J].CIESC Journal, 2021, 72(12):6291-6297. | |
83 | 钟静, 陆旗玮, 林森, 等. 锂铝层状吸附剂超低品位卤水提锂冲洗和解吸过程[J].化工进展, 2021, 40(8):4638-4646. |
ZHONG Jing, LU Qiwei, LIN Sen, et al. Washing and desorption procedures research on granulated lithium aluminum layered double hydroxides for lithium recovery from low-grade brine[J].Chemical Industry and Engineering Progress, 2021, 40(8):4638-4646. | |
84 | MORRIS D F C, SHORT E L. The extraction of lithium chloride by tri-n-butyl phosphate[J].Journal of Inorganic and Nuclear Chemistry, 1963, 25(3):291-301. |
85 | 李丽娟, 彭小五, 时东, 等. 含锂卤水中锂资源高效利用与绿色分离的新型萃取体系[J].盐湖研究, 2018, 26(4):1-10. |
LI Lijuan, PENG Xiaowu, SHI Dong, et al. Eco-friendly separation and effective applications of lithium resources from various brine with lithium:Their extractant and extraction system[J].Journal of Salt Lake Research, 2018, 26(4):1-10. | |
86 | SHI Dong, ZHANG Licheng, PENG Xiaowu, et al. Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors[J].Desalination, 2018, 441:44-51. |
87 | XIANG Wei, LIANG Shengke, ZHOU Zhiyong, et al. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium[J].Hydrometallurgy, 2016, 166:9-15. |
88 |
SU Hui, LI Zheng, ZHANG Jian, et al. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP,FeCl3 and P507[J].Hydrometallurgy, 2020, 197.Doi:10.1016/j.hydromet.2020.105487.
doi: 10.1016/j.hydromet.2020.105487 |
89 | ZHANG Licheng, LI Lijuan, SHI Dong, et al. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system[J].Separation and Purification Technology, 2017, 188:167-173. |
90 | ZHANG Licheng, LI Lijuan, SHI Dong, et al. Recovery of lithium from alkaline brine by solvent extraction with β-diketone[J].Hydrometallurgy, 2018, 175:35-42. |
91 |
LIN Jin, LI Zhi, KAN Jian, et al. Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of(hetero)arenes with trifluoroacetic acid[J].Nature Communications, 2017, 8.Doi:10.1038/ncomms14353.
doi: 10.1038/ncomms14353 |
92 | 赵晓乐, 梁渠, 蔡静. 二苯并-14-冠-4超声波合成及其用于锂镁分离的研究[J].化学研究与应用, 2016, 28(8):1098- 1102. |
ZHAO Xiaole, LIANG Qu, CAI Jing. Study on ultrasonic-aid synthetic method of dibenzo-14-crown-4 and the application in separating lithium and magnesium[J].Chemical Research and Application, 2016, 28(8):1098-1102. | |
93 | SHI Chenglong, JING Yan, JIA Yongzhong. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid[J].Journal of Molecular Liquids, 2016, 215:640- 646. |
94 | SHI Chenglong, JING Yan, XIAO Jiang, et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J].Separation and Purification Technology, 2017, 172:473-479. |
95 |
SUN Qing, CHEN Hang, YU Jianguo. Hydrodynamic investigation on a ceramic hybrid pulsed column for the extraction recovery of lithium from salt lake brine[J].Chemical Engineering and Processing-Process Intensification, 2021, 169.Doi:10.1016/j.cep.2021.108596.
doi: 10.1016/j.cep.2021.108596 |
96 | YI Heng, WANG Yong, SMITH K H, et al. Axial dispersion and mass transfer of a pulsed solvent extraction column with novel ceramic internals[J].Industrial & Engineering Chemistry Research, 2017, 56(11):3049-3058. |
97 | YI Heng, WANG Yong, SMITH K H, et al. Hydrodynamic performance of a pulsed solvent extraction column with novel ceramic internals:Holdup and drop size[J].Industrial & Engineering Chemistry Research, 2017, 56(4):999-1007. |
98 | YANG Gang, SHI Hong, LIU Wenqiang, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J].Chinese Journal of Che- mical Engineering, 2011, 19(4):586-591. |
99 | SOMRANI A, HAMZAOUI A H, PONTIE M. Study on lithium separation from salt lake brines by nanofiltration(NF) and low pressure reverse osmosis(LPRO)[J].Desalination, 2013, 317:184-192. |
100 | 盐科学与化工编辑部. 盐湖锂资源开发破技术瓶颈[J].盐科学与化工, 2019, 48(2):15. |
101 |
XU Fang, DAI Liheng, WU Yulin, et al. Li+/Mg2+ separation by membrane separation:The role of the compensatory effect[J].Journal of Membrane Science, 2021, 636.Doi:10.1016/j.memsci.2021.119542.
doi: 10.1016/j.memsci.2021.119542 |
102 | CHIANG Y C, HSUB Y Z, RUAAN R C, et al. Nanofiltration membranes synthesized from hyperbranched polyethyleneimi-ne[J].Journal of Membrane Science, 2009, 326(1):19-26. |
103 |
LU Dan, MA Tao, LIN Saisai, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+ [J].Journal of Membrane Science, 2021, 635.Doi:10.1016/j.memsci.2021.119504.
doi: 10.1016/j.memsci.2021.119504 |
104 | NIE Xiaoyao, SUN Shuying, SUN Ze, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J].Desalination, 2017, 403:128-135. |
105 | JI Zhiyong, CHEN Qingbai, YUAN Junsheng, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J].Separation and Purification Technology, 2017, 172:168-177. |
106 |
JIANG Chenxiao, CHEN Binglun, XU Ziang, et al. Ion-“distillation” for isolating lithium from lake brine[J].AIChE Journal, 2022, 68(6).Doi:10.1002/aic.17710.
doi: 10.1002/aic.17710 |
107 | SHEHZAD M A, WANG Yaoming, YASMIN A, et al. Biomimetic nanocones that enable high ion permselectivity[J].Angewandte Chemie International Edition, 2019, 58(36):12646-12654. |
108 | ZHANG Dongyu, JIANG Chenxiao, LI Yuanyuan, et al. Electro-driven in situ construction of functional layer using amphoteric molecule:The role of tryptophan in ion sieving[J].ACS Applied Materials & Interfaces, 2019, 11(40):36626-36637. |
109 |
YING Jiadi, LIN Yuqing, ZHANG Yiren, et al. Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity[J].Chemical Engineering Journal, 2022, 446.Doi:10.1016/j.cej.2022.137076.
doi: 10.1016/j.cej.2022.137076 |
110 | GUO Yi, YING Yulong, MAO Yiyin, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J].Angewandte Chemie International Edition, 2016, 55(48):15120-15124. |
111 |
SHENG Fangmeng, WU Bin, LI Xingya, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J].Advanced Materials, 2021, 33(44).Doi:10.1002/adma.202104404.
doi: 10.1002/adma.202104404 |
112 | XU Tingting, WU Bin, HOU Linxiao, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels[J].Journal of the American Chemical Society, 2022, 144(23):10220-10229. |
113 | HOSHINO T. Lithium recovery from seawater by electrodialysis using ionic liquid-based membrane technology[J].ECS Transactions, 2014, 58(48):173-177. |
114 |
ZHAO Zhongwei, LIU Gui, JIA Hang, et al. Sandwiched liquid-membrane electrodialysis:Lithium selective recovery from salt lake brines with high Mg/Li ratio[J].Journal of Membrane Science, 2020, 596.Doi:10.1016/j.memsci.2019.117685.
doi: 10.1016/j.memsci.2019.117685 |
115 |
YANG Shanshan, YU Shuaijun, YU Lu, et al. Cation exchange membranes coated with polyethyleneimine and crown ether to improve monovalent cation electrodialytic selectivity[J].Membranes, 2021, 11(5).Doi:10.3390/membranes11050351.
doi: 10.3390/membranes11050351 |
116 |
ZHANG Jie, CUI Xulin, YANG Fan, et al. Hybrid cation exchange membranes with lithium ion-sieves for highly enhanced Li+ permeation and permselectivity[J].Macromolecular Materials and Engineering, 2019, 304(1).Doi:10.1002/mame.201800567.
doi: 10.1002/mame.201800567 |
117 | HOSHINO T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor[J].Desalination, 2015, 359:59-63. |
118 | LI Zhen, LI Chunyang, LIU Xiaowei, et al. Continuous electrical pumping membrane process for seawater lithium mining[J].Energy & Environmental Science, 2021, 14(5):3152-3159. |
119 |
HU Xianfeng, MOUSA E, YE Guozhu. Recovery of Co,Ni,Mn,and Li from Li-ion batteries by smelting reduction-Part Ⅱ:A pilot-scale demonstration[J].Journal of Power Sources, 2021, 483.Doi:10.1016/j.jpowsour.2020.229089.
doi: 10.1016/j.jpowsour.2020.229089 |
120 |
YULIUSMAN,SILVIA, NURQOMARIAH A, et al. Recovery of cobalt and nickel from spent lithium ion batteries with citric acid using leaching process:Kinetics study[J].E3S Web of Conferences, 2018, 67.Doi:10.1051/e3sconf/20186703008.
doi: 10.1051/e3sconf/20186703008 |
121 |
SETIAWAN H, PETRUS H T B M, PERDANA I. A kinetics study of acetic acid on cobalt leaching of spent LIBs:Shrinking core model[J].MATEC Web of Conferences, 2018, 154.Doi:10.1051/matecconf/201815401033.
doi: 10.1051/matecconf/201815401033 |
122 | RANDHAWA N S, GHARAMI K, KUMAR M. Leaching kinetics of spent nickel-cadmium battery in sulphuric acid[J].Hydrometallurgy, 2016, 165:191-198. |
123 | NIU Zhirui, ZOU Yikan, XIN Baoping, et al. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration[J].Chemosphere, 2014, 109:92-98. |
124 | XING Lei, LIN Sen, YU Jianguo. Novel recycling approach to regenerate a LiNi0.6Co0.2Mn0.2O2 cathode material from spent lithium-ion batteries[J].Industrial & Engineering Chemistry Research, 2021, 60(28):10303-10311. |
[1] | KONG Lingjie, LI Guangbi, XIE Jiahao, YANG Xinhui, BAI Xiaoqin. Research progress on lithium extraction technology from salt lake brine [J]. Inorganic Chemicals Industry, 2025, 57(1): 14-26. |
[2] | CHENG Chunchun, LI Yulong, ZHANG Zhiqiang, LIU Xuejing. Study on dissolution crystallization for extraction of potassium and separation of magnesium and lithium from salt lake brine [J]. Inorganic Chemicals Industry, 2024, 56(6): 34-39. |
[3] | FU Yu, DENG Mi, HUANG Donggen, WAN Jinbao. Research progress of lithium extraction technology from salt lake brine [J]. Inorganic Chemicals Industry, 2023, 55(9): 9-16. |
[4] | LU Nana, QIN Yaru, MA Shuqing, WANG Qihui, LIU Bing, SHI Chenglong. Study on extraction of lithium from simulated old brine of salt lake by pyridine ionic liquid system [J]. Inorganic Chemicals Industry, 2023, 55(7): 45-50. |
[5] | LIN Yuqing,ZHANG Yiren,QIU Yulong,ZHANG Jiayu,YU Jianguo. Progress and prospect of membrane technology in lithium extraction from salt lake brine [J]. Inorganic Chemicals Industry, 2023, 55(1): 33-45. |
[6] | ZHU Yue,QIU Shengbo,LIU Chenglin,YU Jianguo. Study on enhancement of spodumene phase reconstruction process by mechanical activation [J]. Inorganic Chemicals Industry, 2023, 55(1): 81-86. |
[7] | ZHAO Yuanyuan, CHEN Haifeng, LIU Yunyun, ZHANG Hong, WU Yongmin, ZHANG Jingze, TANG Weiping. Research progress on preparation and modification of manganese based lithium ion sieve [J]. Inorganic Chemicals Industry, 2022, 54(2): 21-29. |
[8] | LI Pan,ZHU Yiyi. Study on lithium dendrite suppression in solid state batteries for new energy vehicles [J]. Inorganic Chemicals Industry, 2022, 54(12): 44-50. |
[9] | NIE Zhen, WU Qian, DING Tao, BU Lingzhong, WANG Yunsheng, YU Jiangjiang, HOU Xianhua. Research progress on industrialization technology of lithium extraction from salt lake brine in China [J]. Inorganic Chemicals Industry, 2022, 54(10): 1-12. |
[10] | Xiong Jiaqing,Zhang Yu,Zhu Junguo. Study on process of producing low-sodium carhalite by double brine mixing method [J]. Inorganic Chemicals Industry, 2021, 53(8): 44-49. |
[11] | Tan Bo,Liu Xianghuan,Liu Xudong,Yi Meigui. Study on law of lithium extraction and impurity removal from spodumene leaching solution [J]. Inorganic Chemicals Industry, 2021, 53(4): 56-60. |
[12] | HAN Jiahuan, NIE Zhen, FANG Chaohe, WU Qian, CAO Qian, WANG Yunsheng, BO Lingzhong, YU Jiangjiang. Analysis of existing circumstance of supply and demand on China′s lithium resources [J]. Inorganic Chemicals Industry, 2021, 53(12): 61-66. |
[13] | CHENG Liqun,ZUO Fushan. Study on preparation and properties of magnesium free hydrogen storage alloys for new energy vehicle batteries [J]. Inorganic Chemicals Industry, 2021, 53(11): 71-76. |
[14] | Chen Wang,Jiang Lei,Pan Qiaozhen,Yang Weiwei,Zhu Xianrong,Chen Linlin,Zhu Wenshuai. Research on preparation and adsorption performance of titanium lithium ion sieve [J]. Inorganic Chemicals Industry, 2021, 53(10): 47-51. |
[15] | Gu Junjie,Li Zengrong,Tang Faman,Zhang Xu,Hou Miaomiao,Wang Xiaohu. Study on continuous ion exchange process applied in lithium extraction from salt lake brine with adsorption method [J]. Inorganic Chemicals Industry, 2020, 52(7): 46-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297