Inorganic Chemicals Industry ›› 2023, Vol. 55 ›› Issue (1): 33-45.doi: 10.19964/j.issn.1006-4990.2022-0606
• Development and utilization of lithium resources • Previous Articles Next Articles
LIN Yuqing(),ZHANG Yiren,QIU Yulong,ZHANG Jiayu,YU Jianguo(
)
Received:
2022-10-12
Online:
2023-01-10
Published:
2023-01-17
Contact:
YU Jianguo
E-mail:linyuqing@ecust.edu.cn;jgyu@ecust.edu.cn
CLC Number:
LIN Yuqing,ZHANG Yiren,QIU Yulong,ZHANG Jiayu,YU Jianguo. Progress and prospect of membrane technology in lithium extraction from salt lake brine[J]. Inorganic Chemicals Industry, 2023, 55(1): 33-45.
Fig.1
Preparation of positively charged nanofiltration membrane on PAN-based membrane surface by DAPP and TMC interfacial polymerization(a);preparation of positively charged nanofiltration membrane by adding MWCNTs to PEI in aqueous solution and TMC interfacial polymerization(b);preparation of positively charged nanofiltration membrane on PES-based membrane surface by PEI and TMC interfacial polymerization(c);preparation of positively charged nanofiltration membrane by adding BHC-CN to BAPP and TMC interfacial polymerization(d)[32-35]"
Fig.4
PVC-based metal-organic skeleton hybrid matrix membrane(a);in situ growth of PSS interwoven HKUST-1 metal-organic frameworks membrane(b);counter-diffusion growth preparation of CC3 porous organic cage membrane for mono-anddivalent ion separation(c);amphiphilic ion-exchange membrane modified within ion clusters(d)[57,59,61,63]"
Fig.5
Mechanism of lithium ion recovery from seawater by lithium ion superconducting glass-ceramic membrane(a);crystal structure of LLTO and mechanism of lithium ion penetration and lithium ion enrichment in LLTO lattice(b);schematic diagram of lithiumrecovery process of lithium ion superconducting glass-ceramic membrane(Li0.29La0.57TiO3) driven by electric field(c)[68-69,71]"
1 | 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J].化工学报, 2018, 69(1):141-155. |
LIU Dongfan, SUN Shuying, YU Jianguo. Research and development on technique of lithium recovery from salt lake brine[J].CIESC Journal, 2018, 69(1):141-155. | |
2 | 中华人民共和国国家发展和改革委员会发展规划司. 全国矿产资源规划 (2016—2020年)[EB/OL].(2017-05-11). |
3 | 中华人民共和国自然资源部. 中国矿产资源报告(2019)[R].北京:地质出版社, 2019. |
Ministry of Natural Resources,PRC. China Mineral Resources(2019)[R].Beijing:Geological Publishing House, 2019. | |
4 |
SUN Nan, DOU Pengjia, ZHAI Wentao, et al. Polyethylene separator supported thin-film composite forward osmosis membranes for concentrating lithium enriched brine[J].Water Research, 2022, 216.Doi:10.1016/j.watres.2022.118297.
doi: 10.1016/j.watres.2022.118297 |
5 | 新华社. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL].(2021-03-13). |
6 | 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J].化工学报, 2021, 72(6):2905-2921, 3433. |
WANG Qi, ZHAO Youjing, LIU Yang, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine with high magnesium/lithium ratio[J].CIESC Journal, 2021, 72(6):2905-2921, 3433. | |
7 | 尹红军, 邓天龙, 李栋婵. 盐湖卤水资源锂镁分离提取的研究进展[J].无机盐工业, 2009, 41(5):1-4. |
YIN Hongjun, DENG Tianlong, LI Dongchan. Progress on lithium and magnesium separation and recovery from the salt lake brin-es[J].Inorganic Chemicals Industry, 2009, 41(5):1-4. | |
8 | 马丽, 孟永涛, 毕秋艳, 等. 盐湖高锂卤水中硫酸根的分离与锂的迁移[J].无机盐工业, 2021, 53(6):150-155. |
MA Li, MENG Yongtao, BI Qiuyan, et al. Separation of sulfate and migration of lithium in high lithium brine of salt lake[J].Inorganic Chemicals Industry, 2021, 53(6):150-155. | |
9 | 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J].化学进展, 2017, 29(7):796-808. |
ZHAO Xu, ZHANG Qi, WU Haihong, et al. Extraction of lithium from salt lake brine[J].Progress in Chemistry, 2017, 29(7):796- 808. | |
10 | LIU Gui, ZHAO Zhongwei, GHAHREMAN A. Novel approaches for lithium extraction from salt-lake brines:A review[J].Hydrometallurgy, 2019, 187:81-100. |
11 |
YANG Zhao, FANG Wangxi, WANG Zhenyi, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J].Journal of Membrane Science, 2021, 620.Doi:10.1016/j.memsci.2020.118862.
doi: 10.1016/j.memsci.2020.118862 |
12 |
XU Yong, CHEN Qingbai, WANG Jianyou, et al. Fractionation of monovalent ions from seawater brine via softening nanofiltration and selective electrodialysis:Which is better?[J].Desalination, 2022, 533.Doi:10.1016/j.desal.2022.115717.
doi: 10.1016/j.desal.2022.115717 |
13 |
RAZMJOU A, ASADNIA M, HOSSEINI E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J].Nature Communications, 2019, 10.Doi:10.1038/s41467-019-13648-7.
doi: 10.1038/s41467-019-13648-7 |
14 | LIN Yuqing, YAO Xuesong, SHEN Qin, et al. Zwitterionic copolymer-regulated interfacial polymerization for highly permselective nanofiltration membrane[J].Nano Letters, 2021, 21(15):6525-6532. |
15 |
LIU Suwei, GANTI-AGRAWAL S, KETEN S, et al. Molecular insights into charged nanofiltration membranes:Structure,water transport,and water diffusion[J].Journal of Membrane Science, 2022, 644.Doi:10.1016/j.memsci.2021.120057.
doi: 10.1016/j.memsci.2021.120057 |
16 | QIU Zelin, FANG Lifeng, SHEN Yujie, et al. Ionic dendrimer based polyamide membranes for ion separation[J].ACS Nano, 2021, 15(4):7522-7535. |
17 | YANG Gang, SHI Hong, LIU Wenqiang, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J].Chinese Journal of Chemical Engineering, 2011, 19(4):586-591. |
18 | SOMRANI A, HAMZAOUI A H, PONTIE M. Study on lithium separation from salt lake brines by nanofiltration(NF) and low pressure reverse osmosis(LPRO)[J].Desalination, 2013, 317:184-192. |
19 | SUN Shuying, CAI Lijuan, NIE Xiaoyao, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J].Journal of Water Process Engineering, 2015, 7:210- 217. |
20 |
ZHAO Youjing, WANG Huaiyou, LI Yan, et al. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine[J].Desalination, 2020, 493.Doi:10.1016/j.desal.2020.114620.
doi: 10.1016/j.desal.2020.114620 |
21 |
XU Fang, DAI Liheng, WU Yulin, et al. Li+/Mg2+ separation by membrane separation:The role of the compensatory effect[J].Journal of Membrane Science, 2021, 636.Doi:10.1016/j.memsci.2021.119542.
doi: 10.1016/j.memsci.2021.119542 |
22 |
LI Yan, ZHAO Youjing, WANG Huaiyou, et al. The application of nanofiltration membrane for recovering lithium from salt lake brine[J].Desalination, 2019, 468.Doi:10.1016/j.desal.2019.114081.
doi: 10.1016/j.desal.2019.114081 |
23 |
LI Xianhui, MO Yinghui, QING Weihua, et al. Membrane-based technologies for lithium recovery from water lithium resources:A review[J].Journal of Membrane Science, 2019, 591.Doi:10.1016/j.memsci.2019.117317.
doi: 10.1016/j.memsci.2019.117317 |
24 |
LI Yunhao, WANG Shuhao, WU Wenyuan, et al. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation[J].Journal of Membrane Science, 2022, 659.Doi:10.1016/j.memsci.2022.120809.
doi: 10.1016/j.memsci.2022.120809 |
25 |
TANG Mingjian, LIU Meiling, LI Lu, et al. Solvation-amination-synergy that neutralizes interfacially polymerized membranes for ultrahigh selective nanofiltration[J].AIChE Journal, 2022, 68(6).Doi:10.1002/aic.17602.
doi: 10.1002/aic.17602 |
26 |
XU Yang, PENG Huawen, LUO Hao, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J].Desalination, 2022, 526.Doi:10.1016/j.desal.2021.115519.
doi: 10.1016/j.desal.2021.115519 |
27 | SONG Qiangqiang, LIN Yuqing, UEDA T, et al. Mechanism insights into the role of the support mineralization layer toward ultrathin polyamide nanofilms for ultrafast molecular separation[J].Journal of Materials Chemistry A, 2021, 9(46):26159-26171. |
28 | LI Lianchao, WANG Baoguo, TAN Huimin, et al. A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane[J].Journal of Membrane Science, 2006, 269(1/2):84-93. |
29 | CHIANG Y C, HSUB Y Z, RUAAN R C, et al. Nanofiltration membranes synthesized from hyperbranched polyethyleneimi-ne[J].Journal of Membrane Science, 2009, 326(1):19-26. |
30 |
LASISI K H, YAO Weihao, XUE Qiang, et al. High performance polyamine-based acid-resistant nanofiltration membranes catalyzed with 1,4-benzenecarboxylic acid in interfacial cross-linking polymerization process[J].Journal of Membrane Science, 2021, 640.Doi:10.1016/j.memsci.2021.119833.
doi: 10.1016/j.memsci.2021.119833 |
31 |
WANG Zhen, YOU Xinda, YANG Chao, et al. Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal[J].Journal of Membrane Science, 2022, 642.Doi:10.1016/j.memsci.2021.119971.
doi: 10.1016/j.memsci.2021.119971 |
32 | LI Xianhui, ZHANG Chunjin, ZHANG Shuning, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J].Desalination, 2015, 369:26-36. |
33 | ZHANG Haizhen, XU Zhenliang, DING Hao, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+ [J].Desalination, 2017, 420:158-166. |
34 | XU Ping, WANG Wei, QIAN Xiaoming, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J].Desalination, 2019, 449:57-68. |
35 |
BI Qiuyan, ZHANG Chao, LIU Jiandong, et al. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties[J].Separation and Purification Technology, 2021, 257.Doi:10.1016/j.seppur.2020.117959.
doi: 10.1016/j.seppur.2020.117959 |
36 |
GONZALES R R, SASAKI Y, ISTIROKHATUN T, et al. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes[J].Separation and Purification Technology, 2022, 297. Doi:10.1016/j.seppur.2022.121534.
doi: 10.1016/j.seppur.2022.121534 |
37 |
WU Huanhuan, LIN Yakai, FENG Wenyan, et al. A novel nanofiltration membrane with[MimAP][Tf2N]ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J].Journal of Membrane Science, 2020, 603.Doi:10.1016/j.memsci.2020.117997.
doi: 10.1016/j.memsci.2020.117997 |
38 | LI Wei, SHI Chang, ZHOU Ayang, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation[J].Separation and Purification Technology, 2017, 186:233-242. |
39 |
LU Dan, MA Tao, LIN Saisai, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+[J].Journal of Membrane Science, 2021, 635.Doi:10.1016/j.memsci.2021.119504.
doi: 10.1016/j.memsci.2021.119504 |
40 |
PENG Huawen, ZHAO Qiang. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J].Advanced Functional Materials, 2021, 31(14).Doi:10.1002/adfm.202009430.
doi: 10.1002/adfm.202009430 |
41 |
ZHANG Xin, ZHENG Junfeng, JIN Pengrui, et al. A PEI/TMC membrane modified with an ionic liquid with enhanced permeability and antibacterial properties for the removal of heavy metal ions[J].Journal of Hazardous Materials, 2022, 435.Doi:10.1016/j.jhazmat.2022.129010.
doi: 10.1016/j.jhazmat.2022.129010 |
42 |
YAN Junying, WANG Huangying, FU Rong, et al. Ion exchange membranes for acid recovery:Diffusion Dialysis(DD) or Selective Electrodialysis(SED)?[J].Desalination, 2022, 531.Doi:10.1016/j.desal.2022.115690.
doi: 10.1016/j.desal.2022.115690 |
43 | NIE Xiaoyao, SUN Shuying, SUN Ze, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J].Desalination, 2017, 403:128-135. |
44 | NIE Xiaoyao, SUN Shuying, SONG Xingfu, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J].Journal of Membrane Science, 2017, 530:185-191. |
45 | JI Zhiyong, CHEN Qingbai, YUAN Junsheng, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J].Separation and Purification Technology, 2017, 172:168-177. |
46 |
JIANG Chenxiao, CHEN Binglun, XU Ziang, et al. Ion-“distillation” for isolating lithium from lake brine[J].AIChE Journal, 2022, 68(6).Doi:10.1002/aic.17710.
doi: 10.1002/aic.17710 |
47 | 许振良, 张海珍, 丁浩. 面向盐湖卤水和海水锂资源膜法提锂过程现状与进展 [C]//中国膜工业协会,中南大学.第五届全国膜分离技术在冶金工业中应用研讨会,2016. |
48 | 吴静, 任秀莲, 魏琦峰. 盐湖卤水中锂的分离提取研究进展[J].无机盐工业, 2020, 52(12):1-6. |
WU Jing, REN Xiulian, WEI Qifeng. Research progress on separation and extraction of lithium from salt-lake brine[J].Inorganic Chemicals Industry, 2020, 52(12):1-6. | |
49 |
YING Jiadi, LIN Yuqing, ZHANG Yiren, et al. Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity[J].Chemical Engineering Journal, 2022, 446.Doi:10.1016/j.cej.2022.137076.
doi: 10.1016/j.cej.2022.137076 |
50 |
YING Jiadi, LIN Yuqing, ZHANG Yiren, et al. Mechanistic insights into the degradation of monovalent selective ion exchange membrane towards long-term application of real salt lake brin-es[J].Journal of Membrane Science, 2022, 652.Doi:10.1016/j.memsci.2022.120446.
doi: 10.1016/j.memsci.2022.120446 |
51 |
ZHANG Yiren, LIN Yuqing, YING Jiadi, et al. Highly efficient monovalent ion transport enabled by ionic crosslinking-induced nanochannels[J].AIChE Journal, 2022, 68(11).Doi:10.1002/aic.17825.
doi: 10.1002/aic.17825 |
52 |
ZHOU Zongyao, SHINDE D B, GUO Dong, et al. Flexible ionic conjugated microporous polymer membranes for fast and selective ion transport[J].Advanced Functional Materials, 2022, 32(6).Doi:10.1002/adfm.202108672.
doi: 10.1002/adfm.202108672 |
53 | ONOUE Y, MIZUTANI Y, YAMANE R, et al. Selectivity of cation exchange membrane for NaCl-CaCl2 system[J].Journal of the Electrochemical Society of Japan, 1961, 29:E155-E158. |
54 | SHEHZAD M A, WANG Yaoming, YASMIN A, et al. Biomimetic nanocones that enable high ion permselectivity[J].Angewandte Chemie International Edition, 2019, 58(36):12646-12654. |
55 | ZHANG Dongyu, JIANG Chenxiao, LI Yuanyuan, et al. Electro-driven in situ construction of functional layer using amphoteric molecule:The role of tryptophan in ion sieving[J].ACS Applied Materials & Interfaces, 2019, 11(40):36626-36637. |
56 | LU Jun, ZHANG Huacheng, HOU Jue, et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks[J].Nature Materials, 2020, 19(7):767-774. |
57 |
ZHANG Chengyi, MU Yingxin, ZHANG Wen, et al. PVC-based hybrid membranes containing metal-organic frameworks for Li+/Mg2+ separation[J].Journal of Membrane Science, 2020, 596.Doi:10.1016/j.memsci.2019.117724.
doi: 10.1016/j.memsci.2019.117724 |
58 |
SHEHZAD M A, YASMIN A, GE Xiaolin, et al. A review of nanostructured ion-exchange membranes[J].Advanced Materials Tec- hnologies, 2021, 6(10).Doi:10.1002/admt.202001171.
doi: 10.1002/admt.202001171 |
59 | GUO D Y, YING D Y, MAO D Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J].Angewandte Chemie International Edition, 2016, 55(48):15120-15124. |
60 |
SHENG Fangmeng, WU Bin, LI Xingya, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J].Advanced Materials, 2021, 33(44).Doi:10.1002/adma.202104404.
doi: 10.1002/adma.202104404 |
61 | XU Tingting, WU Bin, HOU Linxiao, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels[J].Journal of the American Chemical Society, 2022, 144(23):10220-10229. |
62 |
IRFAN M, WANG Yaoming, XU Tongwen. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity[J].Che-mical Engineering Journal, 2020, 383.Doi:10.1016/j.cej.2019.123171.
doi: 10.1016/j.cej.2019.123171 |
63 |
IRFAN M, XU Tingting, GE Liang, et al. Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity:Investigating the effect of functional groups and operating parameters[J].Journal of Membrane Science, 2019, 588.Doi:10.1016/j.memsci.2019.117211.
doi: 10.1016/j.memsci.2019.117211 |
64 | 李新望, 谷晓娟, 左大海, 等. 陶瓷超滤膜用于盐湖卤水提锂合格液的中试研究[J].无机盐工业, 2020, 52(4):61-64. |
LI Xinwang, GU Xiaojuan, ZUO Dahai, et al. Pilot study of ceramic ultrafiltration membrane for qualified lithium-extraction solution from salt lake brine[J].Inorganic Chemicals Industry, 2020, 52(4):61-64. | |
65 | 李晓光, 丁书强, 卓锦德, 等. 溶胶-凝胶法制备陶瓷膜研究进展[J].无机盐工业, 2019, 51(1):7-11. |
LI Xiaoguang, DING Shuqiang, Jinder JOW, et al. Preparation and development of ceramic membrane prepared by sol-gel process[J].Inorganic Chemicals Industry, 2019, 51(1):7-11. | |
66 | 孟庆伟, 张峰, 陈璐, 等. 离子筛吸附与陶瓷膜耦合用于盐湖卤水提锂[J].化工学报, 2017, 68(5):1899-1905. |
MENG Qingwei, ZHANG Feng, CHEN Lu, et al. Lithium recovery from Qarham brine using adsorption-membrane separation hybrid system[J].CIESC Journal, 2017, 68(5):1899-1905. | |
67 | 张理元, 沈如倩, 阳金菊, 等. 锂离子筛研究进展[J].无机盐工业, 2022, 54(5):28-37. |
ZHANG Liyuan, SHEN Ruqian, YANG Jinju, et al. Research progress on lithium ion sieves[J].Inorganic Chemicals Industry, 2022, 54(5):28-37. | |
68 | HOSHINO T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor[J].Desalination, 2015, 359:59-63. |
69 | LI Zhen, LI Chunyang, LIU Xiaowei, et al. Continuous electrical pumping membrane process for seawater lithium mining[J].Energy & Environmental Science, 2021, 14(5):3152-3159. |
70 |
SASAKI K, HIRAKA R, TAKAHASHI H, et al. Energy balance of lithium recovery by electrodialysis using La0.57Li0.29TiO3 electrolyte[J].Fusion Engineering and Design, 2021, 170.Doi:10.1016/j.fusengdes.2021.112500.
doi: 10.1016/j.fusengdes.2021.112500 |
71 |
MORITA K, MATSUMOTO T, HOSHINO T. Efficient lithium extraction via electrodialysis using acid-processed lithium-adsorbing lithium lanthanum titanate[J].Desalination, 2022, 543.Doi:10.1016/j.desal.2022.116117.
doi: 10.1016/j.desal.2022.116117 |
72 |
YU Weisheng, ZHANG Kaiyu, ZHANG Jianjun, et al. Efficient lamellar two-dimensional proton channels derived from dipole interactions in a polyelectrolyte membrane[J].AIChE Journal, 2022, 68(8).Doi:10.1002/aic.17731.
doi: 10.1002/aic.17731 |
73 | LIMJUCO L A, NISOLA G M, TORREJOS R E C, et al. Aerosol cross-linked crown ether diols melded with poly(vinyl alcohol) as specialized microfibrous Li+ adsorbents[J].ACS Applied Materials & Interfaces, 2017, 9(49):42862-42874. |
74 |
ZHU Quanji, MA Xiaohua, PEI Hongchang, et al. A highly-efficient lithium adsorptive separation membrane derived from a polyimide-containing dibenzo-14-crown-4 moiety[J].Separation and Purification Technology, 2020, 247.Doi:10.1016/j.seppur.2020.116940.
doi: 10.1016/j.seppur.2020.116940 |
75 | LU Jian, QIN Yingying, ZHANG Qi, et al. Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone[J].Applied Surface Science, 2018, 427:931-941. |
76 |
WARNOCK S J, SUJANANI R, ZOFCHAK E S, et al. Engineering Li/Na selectivity in 12-Crown-4-functionalized polymer membranes[J].PNAS, 2021, 118(37).Doi:10.1073/pnas.2022197118.
doi: 10.1073/pnas.2022197118 |
77 | ZOFCHAK E S, ZHANG Zidan, WHEATLE B K, et al. Origins of lithium/sodium reverse permeability selectivity in 12-crown-4-functionalized polymer membranes[J].ACS Macro Letters, 2021, 10(9):1167-1173. |
78 | 侯淑华, 王雪, 董雪, 等. 抗污染高分子分离膜研究进展[J].应用化学, 2017, 34(5):502-511. |
HOU Shuhua, WANG Xue, DONG Xue, et al. Research progress in antifouling polymeric separation membranes[J].Chinese Journal of Applied Chemistry, 2017, 34(5):502-511. | |
79 | 任六一, 赵颂, 王志, 等. 抗污染芳香聚酰胺反渗透膜研究进展[J].化工学报, 2020, 71(2):475-486. |
REN Liuyi, ZHAO Song, WANG Zhi, et al. Research progress of antifouling aromatic polyamide reverse osmosis membrane[J].CIESC Journal, 2020, 71(2):475-486. | |
80 | GUO Jie, YANG Qiaoli, MENG Qingwei, et al. Membrane surface functionalization with imidazole derivatives to benefit dye removal and fouling resistance in forward osmosis[J].ACS Applied Materials & Interfaces, 2021, 13(5):6710-6719. |
81 |
DIZON G V, LEE Yusheng, VENAULT A, et al. Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process[J].Journal of Membrane Science, 2021, 618.Doi:10.1016/j.memsci.2020.118753.
doi: 10.1016/j.memsci.2020.118753 |
82 |
YANG Zhe, TAKAGI R, ZHANG Xinyu, et al. Engineering a dual-functional sulfonated polyelectrolyte-silver nanoparticle complex on a polyamide reverse osmosis membrane for robust biofouling mitigation[J].Journal of Membrane Science, 2021, 618.Doi:10.1016/j.memsci.2020.118757.
doi: 10.1016/j.memsci.2020.118757 |
[1] | Peng Wenbo,Yun Jianjun,Ding Bangchao,Bai Zuguo,Xiao Weiyi,Wang Xiaohu. Study on membrane integration technology in treatment of wastewater from chlorinated titanium dioxide [J]. Inorganic Chemicals Industry, 2020, 52(6): 76-79. |
[2] | Cheng Qi,Meng Yongtao,Bi Qiuyan,Ma Li,Guan Yunshan. Screening of nanofiltration membrane for separation of magnesium and lithium [J]. Inorganic Chemicals Industry, 2020, 52(4): 42-48. |
[3] | GUO Shu-Fen, ZHOU Jun-Bo, PAN Sheng. Study on treatment process of mother liquor in sodium chlorate industry [J]. INORGANICCHEMICALSINDUSTRY, 2012, 44(10): 37-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297