Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (12): 60-67.doi: 10.19964/j.issn.1006-4990.2022-0121
• Research & Development • Previous Articles Next Articles
YI Jinliang(),YANG Min(
),SONG Fangxiang,CHEN Qianlin
Received:
2022-03-16
Online:
2022-12-10
Published:
2022-12-19
Contact:
YANG Min
E-mail:1316723936@qq.com;myang6@gzu.egu.cn
CLC Number:
YI Jinliang,YANG Min,SONG Fangxiang,CHEN Qianlin. Study on preparation and electrochemical properties of agaric carbon-based cobalt sulfide composites[J]. Inorganic Chemicals Industry, 2022, 54(12): 60-67.
Table 1
Comparision of electrochemical performance ofelectrode materials prepared in this work and the reportedcobalt sulfide electrode materials"
名称 | 比容量/ (F·g-1) | 最大电流密 度下比容量/(F·g-1) | 电容 保持 率/% | KOH电解液浓度/ (mol·L-1) |
---|---|---|---|---|
CoS[ | 348.0 (1 A/g) | 100.00 (20 A/g) | 97.0(1 000次循 环,3 A/g) | 6 |
CoS2[ | 236.0 (1 A/g) | 152.50 (15 A/g) | 92.6(2 000次循 环,1 A/g) | 2 |
Co4S3/PC[ | 167.2 (1 A/g) | 60.20 (10 A/g) | 86.2(1 000次循 环,2 A/g) | 6 |
CoS2-rGO[ | 331.0 (0.5 A/g) | 239.00 (10 A/g) | 97.0(2 000次循 环,10 A/g) | 6 |
Co9S8@S-rGO[ | 348.5 (1 A/g) | 246.54 (10 A/g) | 92.6(5 000次循 环,1 A/g) | 6 |
CoS2/C[ | 466.0 (1 A/g) | 236.00 (10 A/g) | — | 6 |
CoS/NSAC | 484.8 (0.5 A/g) | 167.50 (50 A/g) | 78.8(5 000次循环,20 A/g) | 6 |
Fig.7
CV curves of CoS/NSAC and AC at scanning rate of 30 mV/s(a),CV and GCD curves of CoS/NSAC//AC asymmetric supercapacitor with electrolyte of KOH(b);CV and GCD curves with electrolyte of Na2SO4(c,d);CV curves(e);GCD curves(f);energy density and specific capacity at different current densities(g);stable performance for 1 800 cycles(h);turned on LED(i)."
1 | LUO Lu, ZHOU Yalan, YAN Wen, et al. Construction of advanced zeolitic imidazolate framework derived cobalt sulfide/MXene composites as high-performance electrodes for supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 615:282-292. |
2 |
CHAI Shanshan, ZHANG Lun, ZHANG Weibin, et al. Acid etching halloysite loaded cobalt boride material for supercapacitor electrode application[J]. Applied Clay Science, 2022, 218.Doi:10.1016/j.clay.2022.106426 .
doi: 10.1016/j.clay.2022.106426 |
3 | 李倩男, 王桂玲, 张卫民, 等. 多孔球状Mn3O4的制备及电容特性研究[J]. 硅酸盐通报, 2019, 38(7):2157-2161. |
LI Qiannan, WANG Guiling, ZHANG Weimin, et al. Preparation of porous spherical Mn3O4 and its capacitance characteristics[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7):2157-2161. | |
4 |
JI Zhenyuan, CHEN Lizhi, LIU Kai, et al. Nickel sulfide and cobalt sulfide nanoparticles deposited on ultrathin carbon two-dimensional nanosheets for hybrid supercapacitors[J]. Applied Surface Science, 2022, 574.Doi:10.1016/j.apsusc.2021.151727 .
doi: 10.1016/j.apsusc.2021.151727 |
5 |
LI Xuan, YAN Wenjun, GUO Shoujing, et al. One-step electrochemical controllable preparation of nickel cobalt sulfide nano-sheets and its application in supercapacitors[J]. Electrochimica Acta, 2021, 387.Doi:10.1016/j.electacta.2021.138488 .
doi: 10.1016/j.electacta.2021.138488 |
6 |
ZHAO Fenglin, XIE Dong, SONG Xinrui, et al. Construction of hydrangea-like nickel cobalt sulfide through efficient microwave-assisted approach for remarkable supercapacitors[J]. Applied Surface Science, 2021, 539.Doi:10.1016/j.apsusc.2020.148260 .
doi: 10.1016/j.apsusc.2020.148260 |
7 | WANG Meixia, ZHANG Jing, FAN Huili, et al. ZIF-67 derived Co3O4/carbon aerogel composite for supercapacitor electrodes[J]. New Journal of Chemistry, 2019, 43(15):5666-5669. |
8 | RAPHAEL EZEIGWE E, DONG Li, WANG Jianyi, et al. MOF-deviated zinc-nickel-cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 574: 140-151. |
9 | 沈威, 王思楠, 梁雪梅, 等. 纳米MOFs及其衍生物在超级电容器中的研究进展[J]. 无机盐工业, 2021, 53(6):79-86. |
SHEN Wei, WANG Sinan, LIANG Xuemei, et al. Research progress of nano MOFs and their derivatives for supercapacitors[J]. Inorganic Chemicals Industry, 2021, 53(6):79-86. | |
10 | ZANG Yang, LUO Hui, ZHANG Hang, et al. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(2):1189-1198. |
11 |
JI Zhenyuan, LI Na, XIE Minghua, et al. High-performance hybrid supercapacitor realized by nitrogen-doped carbon dots modified cobalt sulfide and reduced graphene oxide[J]. Electrochimica Acta, 2020, 334.Doi:10.1016/j.electacta.2020.135632 .
doi: 10.1016/j.electacta.2020.135632 |
12 |
SONG Fangxiang, CHEN Qianlin, LI Yan, et al. High energy density supercapacitors based on porous mSiO2@Ni3S2/NiS2 promoted with boron nitride and carbon[J]. Chemical Engineering Journal, 2020, 390.Doi:10.1016/j.cej.2020.124561 .
doi: 10.1016/j.cej.2020.124561 |
13 |
ZHAO Feng, SONG Fangxiang, CHEN Qianlin. Nitrogen/sulfur codoped FCC-slurry-based porous carbon materials in symmetric supercapacitors[J]. Applied Surface Science, 2021, 561.Doi:10.1016/j.apsusc.2021.150063 .
doi: 10.1016/j.apsusc.2021.150063 |
14 | JIAN Xian, LIU Shiyu, GAO Yuqi, et al. Facile synthesis of three-dimensional sandwiched MnO2@GCs@MnO2 hybrid nanostructured electrode for electrochemical capacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(22):18872-18882. |
15 | YU Ji, LUO Jindi, ZHANG Hai, et al. Two for one:A biomass strategy for simultaneous synthesis of MnO2 microcubes and porous carbon microcubes for high performance asymmetric supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16):6333-6342. |
16 |
WAN Liu, XIAO Rui, LIU Jiaxing, et al. A novel strategy to prepare N,S-codoped porous carbons derived from barley with high surface area for supercapacitors[J]. Applied Surface Science, 2020, 518.Doi:10.1016/j.apsusc.2020.146265 .
doi: 10.1016/j.apsusc.2020.146265 |
17 | CHEN Tingting, MA Yifan, GUO Qiubo, et al. A facile sol-gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes[J]. Journal of Materials Chemistry A, 2017, 5(7):3179-3185. |
18 |
GUO Chunli, ZHANG Yuyu, YIN Minshuai, et al. Co3O4@Co3S4 core-shell neuroid network for high cycle-stability hybrid-supercapacitors[J]. Journal of Power Sources, 2021, 485.Doi:10.1016/j.jpowsour.2020.229315 .
doi: 10.1016/j.jpowsour.2020.229315 |
19 |
YIN Bo, CAO Xinxin, PAN Anqiang, et al. Encapsulation of CoS x nanocrystals into N/S co-doped honeycomb-like 3D porous carbon for high-performance lithium storage[J]. Advanced Science, 2018, 5(9).Doi:10.1002/advs.201800829 .
doi: 10.1002/advs.201800829 |
20 | 孙美岩, 苏伟丰, 张珅珅, 等. 碳布负载氮掺杂石墨烯及其电化学性能研究[J]. 硅酸盐通报, 2020, 39(3):962-968. |
SUN Meiyan, SU Weifeng, ZHANG Shenshen, et al. Nitrogen-doping graphene loaded on carbon cloth and its electrochemical properties[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3):962-968. | |
21 | FANG Menglu, WANG Zhao, CHEN Xiaojun, et al. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries[J]. Applied Surface Science, 2018, 436: 345-353. |
22 | LUO Jing, MA Bingjie, PENG Jiao, et al. Modified chestnut-like structure silicon carbon composite as anode material for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12):10415-10424. |
23 |
SONG Fangxiang, AO Xianquan, CHEN Qianlin. Effect of heteroatom doping on the charge storage and operating voltage window of nickel-based sulfide composite electrodes in alkaline electrolytes[J]. Chemical Engineering Journal, 2022, 427.Doi:10.1016/j.cej.2021.130885 .
doi: 10.1016/j.cej.2021.130885 |
24 |
ASHOK KUMAR K, PANDURANGAN A, ARUMUGAM S, et al. Effect of Bi-functional hierarchical flower-like CoS nanostructure on its interfacial charge transport kinetics,magnetic and electrochemical behaviors for supercapacitor and DSSC applications[J]. Scientific Reports, 2019, 9(1).Doi:10.1038/s41598-018-37463-0 .
doi: 10.1038/s41598-018-37463-0 |
25 | XING Jiachao, ZHU Yanli, ZHOU Qingwen, et al. Fabrication and shape evolution of CoS2 octahedrons for application in supercapacitors[J]. Electrochimica Acta, 2014, 136: 550-556. |
26 | XIE Yiming, YIN Jie, ZHENG Juanjuan, et al. Synergistic cobalt sulfide/eggshell membrane carbon electrode[J]. ACS Applied Materials & Interfaces, 2019, 11(35):32244-32250. |
27 | TANG Jianhua, SHEN Jianfeng, LI Na, et al. A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors[J]. Ceramics International, 2014, 40(10):15411-15419. |
28 |
MAO Xiling, HE Xin, YANG Wenyao, et al. Hierarchical holey Co9S8@S-rGO hybrid electrodes for high-performance asymmetric supercapacitors[J]. Electrochimica Acta, 2019, 328.Doi:10.1016/j.electacta.2019.135078 .
doi: 10.1016/j.electacta.2019.135078 |
29 | 赵悦, 张海燕, 陈建飞, 等. 三维碗状结构CoS2/C复合材料的制备及其在超级电容器中的应用[J]. 材料研究与应用, 2020, 14(1):19-25, 30. |
ZHAO Yue, ZHANG Haiyan, CHEN Jianfei, et al. Preparation of 3D bowl-shaped CoS2/C composite material and its application in supercapacitors[J]. Materials Research and Application, 2020, 14(1):19-25, 30. | |
30 | CHEN Zhimin, WANG Xiaofeng, DING Zhiyao, et al. Biomass-based hierarchical porous carbon for supercapacitors:Effect of aqueous and organic electrolytes on the electrochemical performance[J]. ChemSusChem, 2019, 12(23):5099-5110. |
[1] | ZHANG Feigang, LIU Zhongli. Study on application of CuO/g-C3N4 composites in organic dye degradation and supercapacitors [J]. Inorganic Chemicals Industry, 2025, 57(1): 129-136. |
[2] | ZOU Liao, MA Xiaolin, LI Xiaobao, YE Judi. Study on preparation of Lignin/LDH and improvement of mechanical properties of polyurethane [J]. Inorganic Chemicals Industry, 2025, 57(1): 64-70. |
[3] | LI Zhao, YIN Youyou, LIU Chenhui, WANG Fang, GAO Jiyun. Study on preparation of two⁃dimensional titanium carbide/zinc oxide nanoparticles and their ethanol gas sensitive properties [J]. Inorganic Chemicals Industry, 2024, 56(8): 33-39. |
[4] | WU Qingqing, XU Xuetang, WANG Fan. Study on capacitor performance of high⁃mass⁃loading ZnCo-based carbonate hydroxide electrode materials [J]. Inorganic Chemicals Industry, 2024, 56(7): 46-54. |
[5] | WANG Jianfang, YANG Heping, LI Kaibin, CONG Shiqiang, ZHANG Bojie, GUO Shan. Study on preparation of C3N4/MnCo2S4 composites and their capacitive properties [J]. Inorganic Chemicals Industry, 2023, 55(7): 70-74. |
[6] | XU Xuetang, WANG Xukai, ZHANG Shenhe, HUANG Meixiang, NONG Shuliu, XU Nuo. Study on preparation and properties of vanadate doped NiCo-LDH electrode [J]. Inorganic Chemicals Industry, 2023, 55(5): 52-58. |
[7] | WANG Xiaoqian,SONG Huiping,XUE Fangbin. Research progress on preparation and application of inorganic salt whiskers [J]. Inorganic Chemicals Industry, 2022, 54(8): 20-32. |
[8] | JIANG Tiantian,XU Xuetang,WANG Fan. Research on growth and supercapacitance of NiCo based electrode materials regulated by halogen ions [J]. Inorganic Chemicals Industry, 2022, 54(8): 66-73. |
[9] | ZHANG Yue,WANG Min,LI Jinli,ZHAO Youjing,WANG Huaiyou. Study on thermophysical properties of solar salt composites doped with nanoparticles [J]. Inorganic Chemicals Industry, 2022, 54(5): 54-60. |
[10] | XI Yuping,LUO Zhihuan. Effect of hydride carrier LaMg2Ni on hydrogen storage properties of Mg2Ni alloy for automobile [J]. Inorganic Chemicals Industry, 2022, 54(5): 61-66. |
[11] | Zhang Tianliang,Li Jun,Xiong Wei,Zhang Haiyan,Tao Xiaoqiu. Study on one-step preparation of activated carbon with high specific surface by K2CO3 activation and its capacitance performance [J]. Inorganic Chemicals Industry, 2022, 54(4): 159-164. |
[12] | WANG Dian,SU Qiong,PANG Shaofeng,CAO Shijun,KANG Lihui,LIANG Lichun,WANG Yanbin,LI Zhaoxia. Study on high-performance supercapacitors based on Fe2O3/biomass carbon composites [J]. Inorganic Chemicals Industry, 2022, 54(3): 59-65. |
[13] | ZHAO Zhichao,WANG Honglin,WANG Xia,SUN Gang,ZHAO Cuilian,SUN Nannan. Controllable preparation of NiMoO4 nanosheets-based microspheres by hydrothermal method and their supercapacitor properties [J]. Inorganic Chemicals Industry, 2022, 54(2): 60-64. |
[14] | LIANG Qunfang,XU Xuetang,WANG Fan. Study on improvement of capacitance performance of NiMn-LDH electrode material by anions exchange [J]. Inorganic Chemicals Industry, 2022, 54(2): 38-44. |
[15] | WANG Ziyou,WANG Xin. Research progress of preparation and strengthening mechanism of graphene/copper-based matrix composites [J]. Inorganic Chemicals Industry, 2022, 54(12): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297