Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (3): 38-44.doi: 10.19964/j.issn.1006-4990.2021-0337
• Reviews and Special Topics • Previous Articles Next Articles
ZHANG Xinyi1(),DI Yuli1,2(
),DONG Qi1,CHEN Xingyu1,ZHANG Zhengdong1
Received:
2021-05-24
Online:
2022-03-10
Published:
2022-03-18
Contact:
DI Yuli
E-mail:952658961@qq.com;diyulidiyumei@163.com
CLC Number:
ZHANG Xinyi,DI Yuli,DONG Qi,CHEN Xingyu,ZHANG Zhengdong. Research progress on preparation of Li3V2(PO4)3 cathode material for lithium-ion batteries[J]. Inorganic Chemicals Industry, 2022, 54(3): 38-44.
[1] |
LEE H S, RAMAR V, KUPPAN S, et al. Key design considerations for synjournal of mesoporous α-Li3V2(PO4)3/C for high power lithium batteries[J]. Electrochimica Acta, 2021, 372.Doi: 10.1016/j.electacta.2021.137831.
doi: 10.1016/j.electacta.2021.137831 |
[2] |
QI N, MA Y Y, REN B, et al. Comparison of the La-doped and Gd-doped Li3V2(PO4)3/C via electrochemical tests and first-principle calculations for lithium-ion batteries[J]. Journal of Physics and Che-mistry of Solids, 2021, 150.Doi: 10.1016/j.jpcs.2020.109889.
doi: 10.1016/j.jpcs.2020.109889 |
[3] |
WANG X, ZHAO X, WANG J, et al. Electrospun Li3V2(PO4)3 nano-belts:Synjournal and electrochemical properties as cathode materials of lithium-ion batteries[J]. Journal of the Chinese Chemical Society, 2017, 64(7):557-564.
doi: 10.1002/jccs.2017.64.issue-5 |
[4] |
CHEN Y, CHEN H, XIAO L, et al. Preparation for honeycombed Li3V2(PO4)3/C composites via vacuum-assisted immersion method and their high-rates performance in lithium-ion batteries[J]. Vacu-um, 2020, 172.Doi: 10.1016/j.vacuum.2019.108926.
doi: 10.1016/j.vacuum.2019.108926 |
[5] |
GUO Y, HUANG Y, JIA D, et al. Preparation and electrochemical properties of high-capacity LiFePO4-Li3V2(PO4)3/C composite for li-thium-ion batteries[J]. Journal of Power Sources, 2014, 246:912-917.
doi: 10.1016/j.jpowsour.2013.08.047 |
[6] |
SØRENSEN D R, MATHIESEN J K, RAVNSBÆK D B, et al. Dyna-mic charge-discharge phase transitions in Li3V2(PO4)3 cathodes[J]. Journal of Power Sources, 2018, 396:437-443.
doi: 10.1016/j.jpowsour.2018.06.023 |
[7] |
ZHANG X, GUO H, LI X, et al. High tap-density Li3V2(PO4)3/C co-mposite material synthesized by sol spray-drying and post-calcining method[J]. Electrochimica Acta, 2012, 64:65-70.
doi: 10.1016/j.electacta.2011.12.073 |
[8] |
LI L, FAN C, HUANG X, et al. The influence of different carbon so-urces on Li3V2(PO4)3/C synthesized by a hybrid sol-gel method as cathode for lithium-ion batteries[J]. Energy Technology, 2015, 3(9):955-960.
doi: 10.1002/ente.201500084 |
[9] |
XIA Y, YU L, LU C, et al. Passion fruit-like structure endows Li3V2(PO4)3@C/CNT composite with superior cyclic stability and rate performance[J]. Journal of Alloys and Compounds, 2021, 859.Doi: 10.1016/j.jallcom.2020.157806.
doi: 10.1016/j.jallcom.2020.157806 |
[10] | 刘艺培. 磷酸钒锂正极材料的制备及电化学性能研究[D]. 马鞍山:安徽工业大学, 2018. |
[11] | 邓玲, 陈善华, 吴骏, 等. 聚阴离子型锂离子电池正极材料Li3V2(PO4)3的研究进展[J]. 应用化工, 2014, 43(3):522-526. |
[12] | GUO S, BAI Y, GENG Z, et al. Facile synjournal of Li3V2(PO4)3/C cathode material for lithium-ion battery via freeze-drying[J]. Jour-nal of Energy Chemistry, 2019, 32:159-165. |
[13] |
LEE S, PARK S S. Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for lithium ion battery:Structure, defect chemistry,lithium ion transport pathway,and dynamics[J]. Journal of Physical Chemistry C, 2012, 116(48):25190-25197.
doi: 10.1021/jp306105g |
[14] |
KUGANATHAN N, CHRONEOS A. Defects and dopant properties of Li3V2(PO4)3[J]. Scientific Reports, 2019, 9(1).Doi: 10.1038/s41598-018-36398-w.
doi: 10.1038/s41598-018-36398-w |
[15] |
RAI A K, THI T V, GIM J, et al. Li3V2(PO4)3/graphene nanocompo-site as a high performance cathode material for lithium ion ba-ttery[J]. Ceramics International, 2015, 41(1):389-396.
doi: 10.1016/j.ceramint.2014.08.082 |
[16] |
LUO Y, SHUI M, SHU J. Understanding the lithium transport me-chanism in monoclinic Li3V2(PO4)3 cathode material by atomistic simulation[J]. Results in Physics, 2019, 14.Doi: 10.1016/j.rinp.2019.102490.
doi: 10.1016/j.rinp.2019.102490 |
[17] | DING M, CHENG C, WEI Q, et al. Carbon decorated Li3V2(PO4)3 for high-rate lithium-ion batteries:Electrochemical performance and charge compensation mechanism[J]. Journal of Energy Che-mistry, 2020, 53:124-131. |
[18] | LIN X, SHEN Z, HAN T, et al. Hydrogel assisted synjournal of Li3V2(PO4)3 composite as high energy density and low-tempera-ture stable secondary battery cathode[J]. Journal of Alloys and Co-mpounds, 2018, 739:837-847. |
[19] |
QIAO Y Q, TU J P, XIANG J Y, et al. Effects of synthetic route on structure and electrochemical performance of Li3V2(PO4)3/C catho-de materials[J]. Electrochimica Acta, 2011, 56(11):4139-4145.
doi: 10.1016/j.electacta.2011.01.109 |
[20] |
LI Y, XIN L, JIE Y. Study on synjournal routes and their influences on chemical and electrochemical performances of Li3V2(PO4)3/car-bon[J]. Electrochimica Acta, 2007, 53(2):474-479.
doi: 10.1016/j.electacta.2007.06.074 |
[21] |
HUANG H, FAULKNER T, BARKER J, et al. Lithium metal pho-sphates,power and automotive applications[J]. Journal of Power Sources, 2009, 189(1):748-751.
doi: 10.1016/j.jpowsour.2008.08.024 |
[22] | BARKER J, SAIDI M Y, SWOYER J L. Lithium iron(Ⅱ) phospho-olivines prepared by a novel carbothermal reduction method[J]. Electrochemical and Solid-State Letters, 2003, 6(3):53-55. |
[23] | 姜霖琳, 田彦文, 刘丽英. 碳热还原法制备锂离子电池正极材料Li3V2(PO4)3的研究[J]. 材料与冶金学报, 2006, 5(2):115-118. |
[24] | 李娜丽, 同艳维, 崔旭梅, 等. 烧结工艺对锂离子电池正极材料磷酸钒锂结构和电化学性能的影响[J]. 钢铁钒钛, 2018, 39(6):59-64. |
[25] |
SECCHIAROLI M, NOBILI F, TOSSICI R, et al. Synjournal and elec-trochemical characterization of high rate capability Li3V2(PO4)3/C prepared by using poly(acrylic acid) and d-(+)-glucose as carbon sources[J]. Journal of Power Sources, 2015, 275:792-798.
doi: 10.1016/j.jpowsour.2014.11.055 |
[26] |
SAÏDI M Y, BARKER J, HUANG H, et al. Performance character-istics of lithium vanadium phosphate as a cathode material for lithi-um-ion batteries[J]. Journal of Power Sources, 2003, 119-121(6):266-272.
doi: 10.1016/S0378-7753(03)00245-3 |
[27] |
LIU L, XIAO W, CHEN M, et al. Improved rate and cycle perfor-mance of nano-sized 5LiFePO4·Li3V2(PO4)3/C via high-energy ball milling assisted carbothermal reduction[J]. Journal of Alloys and Compounds, 2017, 719(30):281-287.
doi: 10.1016/j.jallcom.2017.05.189 |
[28] |
HUANG B, FAN X, ZHENG X, et al. Synjournal and rate performa-nce of lithium vanadium phosphate as cathode material for Li-ion batteries[J]. Journal of Alloys and Compounds, 2011, 509(14):4765-4768.
doi: 10.1016/j.jallcom.2011.01.151 |
[29] |
DUAN W, HU Z, ZHANG K, et al. Li3V2(PO4)3@C core-shell nano-composite as a superior cathode material for lithium-ion batteri-es[J]. Nanoscale, 2013, 5(14):6485-6490.
doi: 10.1039/c3nr01617j |
[30] |
CHANG C, XIANG J, SHI X, et al. Hydrothermal synjournal of car-bon-coated lithium vanadium phosphate[J]. Electrochimica Acta, 2009, 54(2):623-627.
doi: 10.1016/j.electacta.2008.07.038 |
[31] |
REN M, ZHEN Z, LI Y, et al. Preparation and electrochemical stu-dies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion ba-tteries[J]. Journal of Power Sources, 2006, 162(2):1357-1362.
doi: 10.1016/j.jpowsour.2006.08.008 |
[32] |
TENG F, HU Z H, MA X H, et al. Hydrothermal synjournal of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performa-nce for high power lithium ion batteries[J]. Electrochimica Acta, 2013, 91:43-49.
doi: 10.1016/j.electacta.2012.12.090 |
[33] |
LIU H, CHENG C, HUANG X, et al. Hydrothermal synjournal and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(28):8461-8465.
doi: 10.1016/j.electacta.2010.07.049 |
[34] |
REN M M, ZHOU Z, GAO X P, et al. Core-Shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2008, 112(14):5689-5693.
doi: 10.1021/jp800040s |
[35] | MOSHURCHAK L M, BUHRMESTER C, WANG R L, et al. Com-parative studies of three redox shuttle molecule classes for over-charge protection of LiFePO4-based Li-ion cells[J]. Electrochimi-ca Acta, 2007, 52(11):3779-3784. |
[36] | DOEFF M M, HU Yaoqin, MCLARNON F, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Office of Scientific & Technical Information Technical Reports, 2003, 3(3):311-313. |
[37] | ZHUANG B, GUO Z, CHU W, et al. Mesoporous carbon film inlaid with Li3V2(PO4)3 nanoclusters through delaying sol-gel method for high performance lithium-ion hybrid supercapacitors[J]. Electro-chimica Acta, 2018, 283:1589-1599. |
[38] |
LI Y, ZHEN Z, REN M, et al. Electrochemical performance of nano-crystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method[J]. Electrochimica Acta, 2006, 51(28):6498-6502.
doi: 10.1016/j.electacta.2006.04.036 |
[39] |
ZHANG Q, LI Y H, ZHONG S K, et al. Synjournal and electrochemi-cal performance of Li3V2(PO4)3 by optimized sol-gel synjournal rou-tine[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8):1545-1549.
doi: 10.1016/S1003-6326(09)60336-8 |
[40] |
RUI X H, LI C, LIU J, et al. The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route[J]. Electrochimica Acta, 2010, 55(22):6761-6767.
doi: 10.1016/j.electacta.2010.05.093 |
[41] | CAO X, ZHAN H, XIE J. Synjournal of Ag2V4O11 as a cathode mate-rial for lithium battery via a rheological phase method[J]. Materi-als Letters, 2006, 60(4):435-438. |
[42] |
XIE L, CAO X, LIU C, et al. Rheological phase synjournal and cha-racterization of micro-sized Li4Ti5O12[J]. Journal of the Chilean Chemical Society, 2010, 55(3):343-346.
doi: 10.4067/S0717-97072010000300015 |
[43] |
XIE L L, XU Y D, ZHANG J J, et al. Rheological phase synjournal of Er-doped LiV3O8 as electroactive material for a cathode of sec-ondary lithium storage[J]. Electronic Materials Letters, 2013, 9(4):549-553.
doi: 10.1007/s13391-013-2189-0 |
[44] |
CHANG C, XIANG J, SHI X, et al. Rheological phase reaction synjournal and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries[J]. Electrochimica Acta, 2008, 53(5):2232-2237.
doi: 10.1016/j.electacta.2007.09.038 |
[45] | 李丽, 李国华, 王石泉, 等. 磷酸钒锂正极材料的合成与性能研究[J]. 无机化学学报, 2010, 26(1):126-131. |
[46] |
CAO X, ZHANG J. Rheological phase synjournal and characteriza-tion of Li3V2(PO4)3/C composites as cathode materials for lithium ion batteries[J]. Electrochimica Acta, 2014, 129:305-311.
doi: 10.1016/j.electacta.2014.02.095 |
[1] | SU Baocai, ZHANG Qin, XIE Yuanjian, CAI Pingxiong, PAN Yuanfeng. Advances in synthesis methods and structural modification of LiMnFePO4 materials [J]. Inorganic Chemicals Industry, 2024, 56(7): 28-36. |
[2] | ZHAO Tianting, ZHU Delun, YANG Lin, ZHOU Xinlei. Preparation and process optimization of porous silicon anode materials for lithium-ion battery [J]. Inorganic Chemicals Industry, 2024, 56(5): 31-38. |
[3] | ZHOU Haitao, WEN Chengqin, ZHENG Ling, SUN Jie. Research on boron nitride modified film for cathode interface of metallic lithium battery [J]. Inorganic Chemicals Industry, 2024, 56(4): 85-89. |
[4] | HU Wenjuan, SHEN Xiaozhong, WANG Rujia, LU Lu, ZOU Lianli. Effect of annealing temperature on phase structure and electrochemical performance of hydrogen storage alloys for automotive batteries [J]. Inorganic Chemicals Industry, 2024, 56(11): 51-58. |
[5] | LIU Jiasheng, LUO Xiaoqiang, HOU Cuihong, XUE Lingwei. Effects of fluorine doping on electrochemical behavior of LiMn0.8Fe0.2PO4/C cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(11): 45-50. |
[6] | WAN Feng, YAN Yingchun, FAN Zhuangjun. Research progress and prospect of halide solid electrolytes [J]. Inorganic Chemicals Industry, 2024, 56(11): 15-29. |
[7] | PENG Weifeng, SHI Wei. Effect of Co replacing Ni on electrochemical performance of La0.8Mg0.2Ni3.8-x Co x hydrogen storage alloy for automotive batteries [J]. Inorganic Chemicals Industry, 2024, 56(11): 65-71. |
[8] | CHEN Tiandong, ZHAO Guangzhao, HAI Chunxi, DONG Shengde, HE Xin, XU Qi, FENG Hang, YUAN Shaoxiong, MA Luxiang, ZHOU Yuan. Research and industrialization progress on coating and doping modification of lithium-rich manganese-based materials [J]. Inorganic Chemicals Industry, 2023, 55(9): 1-8. |
[9] | FENG Zhun. Improvement of high temperature stability of high nickel single crystal cathode materials by B/Al/Zr synergistic strategy [J]. Inorganic Chemicals Industry, 2023, 55(8): 59-64. |
[10] | TIAN Peng, XU Jingang, XU Qianjin, LIU Kunji, PANG Hongchang, NING Guiling. Preparation of nano-alumina slurry and its application in modifying lithium-ion battery cathode material [J]. Inorganic Chemicals Industry, 2023, 55(12): 43-49. |
[11] | QU Lian, LI Yuezhu, LI Mingya, WANG Zhaopei, CHEN Yanyu, LI Yineng. Study on effect of Fe2P on electrochemical performance of LiFePO4 [J]. Inorganic Chemicals Industry, 2023, 55(12): 88-94. |
[12] | YU Jianguo,SUN Qing,QIU Shengbo,ZHANG Yiren,CHEN Jun. Lithium resources development supporting national new energy strategy development [J]. Inorganic Chemicals Industry, 2023, 55(1): 1-14. |
[13] | TANG Di,WANG Junxiong,CHEN Wen,JI Guanjun,MA Jun,ZHOU Guangmin. Research status and prospect on direct regeneration of cathode materials from retired lithium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(1): 15-25. |
[14] | XU Qianjin,XU Jingang,TIAN Peng,LIU Kunji,GAO Tingting,NING Guiling. Research progress of alumina coated cathode materials for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(1): 46-55. |
[15] | HOU Shunli,ZHAO Duan,ZHOU Geng,WEI Shishi,LI Jian,WANG Jiatai. Research progress on doping modification of high nickel ternary nickel-cobalt-aluminum cathode material [J]. Inorganic Chemicals Industry, 2022, 54(8): 40-46. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 749
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297