Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (4): 1-7.doi: 10.11962/1006-4990.2020-0274
• Reviews and Special Topics • Next Articles
Wang Yongqin,Huang Yangze,Fu Yu
Received:
2020-10-19
Online:
2021-04-10
Published:
2021-04-23
CLC Number:
Wang Yongqin,Huang Yangze,Fu Yu. Research progress of doped metal oxide semiconductor materials[J]. Inorganic Chemicals Industry, 2021, 53(4): 1-7.
[1] | Suwanboon S, Amornpitoksuk P, Bangrak P , et al. Structural, optical and antibacterial properties of nanocrystalline Zn1-xLaxO compound semiconductor[J]. Materials Science in Semiconductor Processing, 2013,16(2):504-512. |
[2] | 刘金家, 徐爱菊 . 过渡金属单氧化物光催化剂的研究进展[J]. 宝鸡文理学院学报:自然科学版, 2016,36(2):47-52. |
[3] | Rooydell R, Brahma S, Wang R C , et al. Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties[J]. Journal of Alloys & Compounds, 2016,691:936-945. |
[4] | Wang M, Xu J, Sun T , et al. Facile photochemical synjournal of hierarchical cake-like ZnO/Ag composites with enhanced visible-light photocatalytic activities[J]. Materials Letters, 2018,219:236-239. |
[5] | Xin D L, Jing L, Si C , et al. Electrical transport properties of Aldoped ZnO films[J]. Applied Surface Science, 2012,263:486-490. |
[6] | Sun Y, Shen Z, Xin S , et al. Ultra-fine Co-doped ZnO nanoparticles on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta, 2016,224:561-570. |
[7] | Wu J, Tang X, Pu C , et al. Twin grain boundary mediated ferromagnetic coupling in Co-doped ZnO:First-principles calculations[J]. Solid State Communications, 2017,250:41-44. |
[8] | Karim A, Tahir N, Chuang Y D , et al. Surface defects:Possible source of room temperature ferromagnetism in Co-doped ZnO nanorods[J]. Journal of Physical Chemistry C, 2010,117(17):8968-8973. |
[9] | Beltrán J J, Barrero C A, Punnoose A . Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles[J]. Physical Chemistry Chemical Physics, 2015,17(23):15284-15296. |
[10] | Kim H, Pak Y, Jeong Y , et al. Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability[J]. Sensors & Actuators B Chemical, 2018,262:460-468. |
[11] | Liu L, Li S, Zhuang J , et al. Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning[J]. Sensors & Actuators B Chemical, 2011,155(2):782-788. |
[12] | Meshki M, Behpour M, Masoum S . Application of Fe doped ZnO nanorods-based modified sensor for determination of sulfamethoxazole and sulfamethizole using chemometric methods in voltammetric studies[J]. Journal of Electroanalytical Chemistry, 2015,740:1-7. |
[13] | Demirci S, Dikici T, Yurddaskal M , et al. Synjournal and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances[J]. Applied Surface Science, 2016,390:591-601. |
[14] | Ilknur Altın, Sökmen M, Bıyıklıoglu Z . Sol gel synjournal of cobaltdoped TiO2, andits dye sensitization for efficient pollutant removal[J]. Materials Science in Semiconductor Processing, 2016,45:36-44. |
[15] | Liu Y, Xu C, Feng Z D . Characteristics and anticorrosion performance of Fe-doped TiO2, films by liquid phase deposition method[J]. Applied Surface Science, 2014,314(24):392-399. |
[16] | Wei L, Xia X, Yang Y , et al. Variable temperature spectroelectro chemistry study of silver-doped TiO2 and its influence on the performance of dye sensitized solar cells[J]. RSC Advances, 2016,6(72):68341-68350. |
[17] | Lu L, Guo M, Thornley S , et al. Remote plasma sputtering deposited Nb-doped TiO2 with remarkable transparent conductivity[J]. Solar Energy Materials & Solar Cells, 2016,149:310-319. |
[18] | Choudhury B, Choudhury A, Borah D . Interplay of dopants and defects in making Cu doped TiO2 nanoparticle a ferromagnetic semiconductor[J]. Journal of Alloys & Compounds, 2015,646:692-698. |
[19] | You M, Kim T G, Sung Y M . Synjournal of Cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations[J]. Crystal Growth & Design, 2016,10(2):296-298. |
[20] | Duta M, Predoana L, Calderon-Moreno J M, et al. Nb-doped TiO2, sol-gel films for CO sensing applications[J]. Materials Science in Semiconductor Processing, 2016,42:397-404. |
[21] | Hussain M, Tariq S, Ahmad M , et al. Ag-TiO2, nanocomposite for environmental and sensing applications[J]. Materials Chemistry & Physics, 2016,181:194-203. |
[22] | Lassoued A, Lassoued M S, García-Granda S , et al. Synjournal and characterization of Ni-doped α-Fe2O3, nanoparticles through coprecipitation method with enhanced photocatalytic activities[J]. Journal of Materials Science:Materials in Electronics, 2018,29:5726-5737. |
[23] | Mansour H, Bargougui R, Autret-Lambert C , et al. Co-precipitation synjournal and characterization of tin-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities[J]. Journal of Physics & Chemistry of Solids, 2017,114:1-7. |
[24] | Suresh R, Giribabu K, Manigandan R , et al. Synjournal of Co 2+-doped Fe2O3 photocatalyst for degradation of pararosaniline dye [J]. Solid State Sciences, 2017,68:39-46. |
[25] | Aroutiounian V M, Arakelyan V M, Shahnazaryan G E , et al. Photoelectrochemistry of tin-doped iron oxide electrodes[J]. Solar Energy, 2007,81(11):1369-1376. |
[26] | Bak A, Choi W, Park H . Enhancingthe photoelectrochemical performance of hematite(α-Fe2O3) electrodes by cadmium incorporation[J]. Applied Catalysis B:Environmental, 2011,110:207-215. |
[27] | Akbar A, Niaz M, Riaz S , et al. Magnetic and structural properties of Cr-doped Fe2O3[J]. Materials Today Proceedings, 2015,2(10):5679-5683. |
[28] | Akbar A, Bashir S, Riaz S , et al. Magnetic properties of Co-doped Fe2O3 thin films[J]. Materials Today Proceedings, 2015,2(10):5674-5678. |
[29] | Picasso G, Kou M R S, Vargasmachuca O, et al. Sensors based on porous Pd-dopedhematite(α-Fe2O3 ) for LPG detection[J]. Micro porous & Mesoporous Materials, 2014,185:79-85. |
[30] | Kumar M P, Josephine G A S, Sivasamy A. Oxidation of organicdye using nanocrystalline rare earth metal ion doped CeO2 under UV and Visible light irradiations[J]. Journal of Molecular Liquids, 2017,242:789-797. |
[31] | Singh K, Kumar K, Srivastava S , et al. Effect of rare-earth doping in CeO2 matrix:Correlations with structure, catalytic and visible light photocatalytic properties[J]. Ceramics International, 2017,43(18):17041-17047. |
[32] | Goh K H, Haseeb A S M A, Wong Y H. Lanthanide rare earth oxide thin film as an alternative gate oxide[J]. Materials Science in Semiconductor Processing, 2017,68:302-315. |
[33] | Babu A S, Bauri R, Reddy G S . Processing and conduction behavior of nano-crystalline Gd-doped and rare earth co-doped ceria electrolytes[J]. Electrochimica Acta, 2016,209:541-550. |
[34] | Prabaharan D D M, Sadaiyandi K, Mahendran M , et al. Investigating the effect of Mn-doped CeO2, nanoparticles by co-precipitation method[J]. Applied Physics A, 2018,124(2):861-867. |
[35] | Chinnu M K, Anand K V, Kumar R M , et al. Synjournal and enhanced electrochemical properties of Sm:CeO2, nanostructure by hydrothermal route[J]. Materials Letters, 2013,113(12):170-173. |
[36] | Abbas F, Iqbal J, Jan T , et al. Differential cytotoxicity of ferromagnetic Co doped CeO2, nanoparticles against human neuroblastoma cancer cells[J]. Journal of Alloys & Compounds, 2015,648:1060-1066. |
[37] | Abbas F, Jan T, Iqbal J , et al. Inhibition of Neuroblastoma cancer cells viability byferromagnetic Mn doped CeO2 monodisperse nanoparticles mediated through reactive oxygen species[J]. Materials Chemistry & Physics, 2016,173:146-151. |
[38] | Niu X, Zhong H, Wang X , et al. Sensing properties of rare earth oxide doped In2O3 by a sol-gel method[J]. Sensors & Actuators B:Chemical, 2006,115(1):434-438. |
[39] | Han D, Yang J J, Gu F , et al. Effects of rare earth elements doping on ethanol gas-sensing performance of three-dimensionally ordered macroporous In2O3[J]. RSC Advances, 2016,6(51):45085-45092. |
[1] | ZHANG Bao, QUAN Kaidong, WANG Yongfeng, HAN Fei, SHI Aiwen, LIU Xin, WANG Xiaomin. Study on fabrication of nanoflower-like Fe y -NiCoS x @NF catalysts and their application in hydrogen evolution and oxygen evolution during seawater electrolysis [J]. Inorganic Chemicals Industry, 2025, 57(2): 130-137. |
[2] | XIONG Cailian, SUN Guobin, LI Heng, XING Feng. Study on structure and electrical properties of Ba(Zr0.15Ti0.85)O3 doped ceramics [J]. Inorganic Chemicals Industry, 2024, 56(8): 60-66. |
[3] | XUE Shan, LIU Lu, DAI Jiansheng, LI Qing, FENG Ze, LI Yineng. Study on electrochemical properties of europium⁃doped LiFePO4 cathode material for lithium⁃ion battery [J]. Inorganic Chemicals Industry, 2024, 56(8): 67-73. |
[4] | ZHANG Lijin, LÜ Qing, CHEN Xiaolang, LI Qingxin, SHI Hongyu, QIN Jun. Preparation of Ca-based LDO composite material and its adsorption performance for phosphate [J]. Inorganic Chemicals Industry, 2024, 56(7): 37-45. |
[5] | XIE Jiang, GUO Ge, QIU Jie. Treatment of methylene blue simulated wastewater by supported activated carbon particle with three-dimensional electrode method [J]. Inorganic Chemicals Industry, 2024, 56(5): 78-86. |
[6] | QIAN Zhihui, ZHU Qin, MA Jiao, GUO Yujiao, XIANG Mingwu, GUO Junming. Study on preparation and electrochemical properties of nano-sized LiNi0.05Mn1.95O4 cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(4): 50-56. |
[7] | ZHOU Huang, HU Xiaoping, REN Wen, CAO Xinxin. Preparation and sodium storage properties of sulfur-doped Na3(VOPO4)2F cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(2): 30-37. |
[8] | FU Yu, ZHANG Boshuang, YANG Jianmao, LIU Jianyun. Research progress of lithium manganese oxide materials in electrochemical lithium extraction applications [J]. Inorganic Chemicals Industry, 2024, 56(12): 62-69. |
[9] | YUAN Shuai, FANG Yangfei, YANG Xiangguang, ZHANG Yibo. Study on synthesis of rare earth-doped CeO2 and its CMP properties [J]. Inorganic Chemicals Industry, 2024, 56(12): 35-41. |
[10] | LIU Jiasheng, LUO Xiaoqiang, HOU Cuihong, XUE Lingwei. Effects of fluorine doping on electrochemical behavior of LiMn0.8Fe0.2PO4/C cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(11): 45-50. |
[11] | LIU Juan, JIANG Qinglai, ZHANG Yueyi. Study on Al-Zn co-doping of 4.6 V high voltage lithium cobalt oxide cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(11): 59-64. |
[12] | CHEN Tiandong, ZHAO Guangzhao, HAI Chunxi, DONG Shengde, HE Xin, XU Qi, FENG Hang, YUAN Shaoxiong, MA Luxiang, ZHOU Yuan. Research and industrialization progress on coating and doping modification of lithium-rich manganese-based materials [J]. Inorganic Chemicals Industry, 2023, 55(9): 1-8. |
[13] | ZHAO Yan, HAO Xuewei, SHI Hainan, LI Jiahui, LI Keyan, GUO Xinwen. Study on photocatalytic CO2 reduction performance of Cu-doped TiO2/PCN heterojunction [J]. Inorganic Chemicals Industry, 2023, 55(8): 21-27. |
[14] | PAN Xiaoxiao, ZHUANG Shuxin, SUN Yuqing, SUN Gaoxing, REN Yan, JIANG Shengyu. Research progress of modified-LiFePO4 as cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(6): 18-26. |
[15] | XU Chunhui, WANG Feng, LING Changjian, WANG Zirui, TANG Zhongfeng. Research progress of CO2 capture by metal oxides modified by molten salts [J]. Inorganic Chemicals Industry, 2023, 55(5): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297