无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ

无机盐工业 ›› 2025, Vol. 57 ›› Issue (11): 43-51.doi: 10.19964/j.issn.1006-4990.2024-0684

• 研究与开发 • 上一篇    下一篇

薄水铝石改善聚氧化乙烯基固态电解质离子电导率的研究

田朋(), 杨广龙, 牟晨曦, 陈君熠, 宁桂玲   

  1. 大连理工大学化工学院,辽宁 大连 116023
  • 收稿日期:2024-12-17 出版日期:2025-11-10 发布日期:2025-07-25
  • 作者简介:田朋(1983— ),男,博士,副教授,主要研究方向是氧化铝精细化学品的开发与工业化基础;E-mail:tianpeng@dlut.edu.cn
  • 基金资助:
    大学生创新创业训练项目(20241014110231);中央高校基本科研业务费(DUT24BK001);国家重点研发计划(2021YFA1500301)

Study on enhancement of ionic conductivity in poly(ethylene oxide)-based solid-state electrolytes by boehmite

TIAN Peng(), YANG Guanglong, MU Chenxi, CHEN Junyi, NING Guiling   

  1. School of Chemical Engineering,Dalian University of Technology,Dalian 116023,China
  • Received:2024-12-17 Published:2025-11-10 Online:2025-07-25

摘要:

聚氧化乙烯(PEO)基聚合物电解质因具有溶解多种钠盐及易于加工的特性,在全固态钠离子电池领域展现广阔的应用前景;但PEO存在结晶度较高及链段运动性不足的缺陷,导致其在室温下的离子电导率较低。研究提出一种解决该问题的有效策略,在PEO和双(三氟甲基磺酰)亚胺钠(NaTFSI)的聚合物体系中加入丁二晴(SN)和薄水铝石(BM)制备出性能优异的复合固态电解质(PEO-NaTFSI-SN-BM),并通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)等技术手段分析SN和BM提高固态电解质离子电导率的作用机理。实验结果表明:在仅添加SN情况下,SN和EO物质的量比为1∶8时,可形成自支撑膜(PNS8),并明显提高PEO-NaTFSI聚合物电解质的离子电导率,在30 ℃下由初始的2.27×10-6 S/cm提高到4.51×10-5 S/cm;进一步加入BM后,复合固态电解质的离子电导率增至6.99×10-5 S/cm,同时显著增强电解质膜的机械性能。在加入BM情况下,继续增加SN和EO物质的量比至1∶4时,仍能形成自支撑膜(PNS4B10)。PNS4B10在30 ℃下的离子电导率高达1.43×10-4 S/cm,较初始的PEO-NaTFSI聚合物电解质提升约60倍。BM的引入不仅促进固态电解质的离子传输,还增强其机械性能,提高SN添加量,从而进一步优化离子电导率。该复合固态电解质为室温下实现全固态钠离子电池的高离子电导率提供有效途径。

关键词: 薄水铝石, 聚氧化乙烯, 丁二腈, 离子电导率, 钠固态电解质

Abstract:

Poly(ethylene oxide)(PEO)-based polymer electrolytes exhibit broad application prospects in the field of all-solid-state sodium-ion batteries due to their ability to dissolve various sodium salts and ease of processing.However,PEO has the defects of high crystallinity and insufficient segmental mobility,resulting in low ionic conductivity at room temperature.This study proposed an effective strategy to address this issue.By incorporating succinonitrile(SN) and boehmite(BM) into the polymer system of PEO and sodium bis(trifluoromethanesulfonyl)imide(NaTFSI).A composite solid electrolyte(PEO-NaTFSI-SN-BM) with excellent performance was successfully prepared.The mechanism of SN and BM improving the ionic conductivity of solid-state electrolyte was analyzed by using techniques including X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy(SEM).The experimental results demonstrated that,when only SN was added and the molar ratio of SN to EO was 1∶8,a self-supporting membrane(PNS8) could be formed,significantly increasing the ionic conductivity of the PEO-NaTFSI polymer electrolyte from the initial 2.27×10-6 S/cm to 4.51×10-5 S/cm at 30 ℃.Upon further incorporation of BM,the ionic conductivity of the composite solid electrolyte was increased to 6.99×10-5 S/cm,while simultaneously enhancing the mechanical properties of the electrolyte membrane.In the presence of BM,when the molar ratio of SN to EO was further increased to 1∶4,a self-supporting membrane(PNS4B10) could still be formed.The ionic conductivity of PNS4B10 at 30 ℃ reached as high as 1.43×10-4 S/cm,representing an approximately 60-fold improvement compared to the initial PEO-NaTFSI polymer electrolyte.The introduction of BM not only facilitated ion transport of the solid-state electrolyte,but also enhanced its mechanical properties,thereby enabling higher SN loading and further optimization of ionic conductivity.This composite solid electrolyte represented a promising approach for achieving high ionic conductivity in all-solid-state sodium metal batteries at room temperature.

Key words: boehmite, poly(ethylene oxide), succinonitrile, ionic conductivity, sodium solid state electrolyte

中图分类号: