| [1] |
LIAO Yitao, LIU Tao, DU Xiaohui,et al.Distribution of iron on FCC catalyst and its effect on catalyst performance[J].Frontiers in Chemistry,2021,9:640413.
|
| [2] |
SOUZA N L A, PANIAGO R, ARDISSON J D,et al.Iron contamination of FCC catalysts:Quantification of different crystalline phases and valence states[J].Applied Catalysis A:General,2019,569:57-65.
|
| [3] |
LIAO Yitao, LIU Tao, ZHAO Huihui,et al.A comparison of laboratory simulation methods of iron contamination for FCC catalysts[J].Catalysts,2021,11(1):104.
|
| [4] |
KHARAS K, MASTRY M C, THOMPSON A,et al.Comparison of an in situ and an incorporated FCC catalyst under iron contamination[J].Catalysis Communications,2022,171:106483.
|
| [5] |
FERREIRA J M M, SOUSA-AGUIAR E F, ARANDA D A G.FCC catalyst accessibility:A review[J].Catalysts,2023,13(4):784.
|
| [6] |
IHLI J, FERREIRA SANCHEZ D, JACOB R R,et al.Localization and speciation of iron impurities within a fluid catalytic cracking catalyst[J].Angewandte Chemie International Edition,2017,56(45):14031-14035.
|
| [7] |
ZHOU Qiaoqiao, QI Yu, LIU Qianqian,et al.A detailed speciation of iron on FCC catalysts based on an integrated use of advanced characterisation methods and thermodynamic equilibrium simulation[J].Applied Catalysis A:General,2020,599:117597.
|
| [8] |
MEIRER F, MORRIS D T, KALIRAI S,et al.Mapping metals incorporation of a whole single catalyst particle using element specific X-ray nanotomography[J].Journal of the American Chemical Society,2015,137(1):102-105.
|
| [9] |
IHLI J, JACOB R R, HOLLER M,et al.A three⁃dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts[J].Nature Communications,2017,8:809.
|
| [10] |
KALIRAI S, BOESENBERG U, FALKENBERG G,et al.X-ray fluorescence tomography of aged fluid⁃catalytic⁃cracking catalyst particles reveals insight into metal deposition processes[J].ChemCatChem,2015,7(22):3674-3682.
|
| [11] |
KALIRAI S, PAALANEN P P, WANG Jian,et al.Visualizing dealumination of a single zeolite domain in a real⁃life catalytic cracking particle[J].Angewandte Chemie International Edition,2016,55(37):11134-11138.
|
| [12] |
WIELAND W S, CHUNG D.Simulation of iron contamination[J].Hydrocarbon Engineering,2002,7(3):55-65.
|
| [13] |
YALURIS G, CHENG W C, PETERS M,et al.Mechanism of fluid cracking catalysts deactivation by Fe[J].Studies in Surface Science and Catalysis,2004,149:139-163.
|
| [14] |
JIANG Hui, LIVI K J, KUNDU S,et al.Characterization of iron contamination on equilibrium fluid catalytic cracking catalyst particles[J].Journal of Catalysis,2018,361:126-134.
|
| [15] |
LIU Qianqian, PENG Bo, ZHOU Qiaoqiao,et al.Role of iron contaminants in the pathway of ultra⁃stable Y zeolite degradation[J].Catalysis Science & Technology,2022,12(13):4145-4156.
|
| [16] |
陈平,王瑶,王晨.铁酸镧的合成及应用研究进展[J].硅酸盐通报,2019,38(3):694-701.
|
|
CHEN Ping, WANG Yao, WANG Chen.Progress on the synthesis and application of LaFeO3 [J].Bulletin of the Chinese Ceramic Society,2019,38(3):694-701.
|
| [17] |
BAGUS P S, NELIN C J, BRUNDLE C R,et al.Combined multiplet theory and experiment for the Fe2 p and 3p XPS of FeO and Fe(2)O(3)[J].The Journal of Chemical Physics,2021,154(9):094709.
|
| [18] |
DENG Gang, CHEN Yungui, TAO Mingda,et al.Electrochemical properties and hydrogen storage mechanism of perovskite⁃type oxide LaFeO3 as a negative electrode for Ni/MH batteries[J].Electrochimica Acta,2010,55(3):1120-1124.
|
| [19] |
WU Mudi, MA Shiwei, CHEN Shiyi,et al.Fe–O terminated LaFeO3 perovskite oxide surface for low temperature toluene oxidation[J].Journal of Cleaner Production,2020,277:123224.
|
| [20] |
DING Junchao, LI Huayao, CAI Zexing,et al.Near room temperature CO sensing by mesoporous LaCoO3 nanowires functionalized with Pd nanodots[J].Sensors and Actuators B:Chemical,2016,222:517-524.
|
| [21] |
KHAIRALLAH F, GLISENTI A.XPS study of MgO nanopowders obtained by different preparation procedures[J].Surface Science Spectra,2006,13(1):58-71.
|
| [22] |
XU Yao, ZHAI Peng, DENG Yuchen,et al.Highly selective olefin production from CO2 hydrogenation on iron catalysts:A subtle synergy between manganese and sodium additives[J].Angewan⁃dte Chemie International Edition,2020,59(48):21736-21744.
|
| [23] |
SABERI M H, MORTAZAVI Y, KHODADADI A A.Dual selective Pt/SnO2 sensor to CO and propane in exhaust gases of gasoline engines using Pt/LaFeO3 filter[J].Sensors and Actuators B:Chemical,2015,206:617-623.
|
| [24] |
FRAGA, CESAR M J P.The effects of iron and copper contamination on the FCC unit performance[J].Preprints,1999,44(4):473-474.
|
| [25] |
胡贝,袁程远,张海涛,等.中孔氧化铝在抗铁污染FCC催化剂中的应用研究[J].石油炼制与化工,2019,50(7):80-84.
|
|
HU Bei, YUAN Chengyuan, ZHANG Haitao,et al.Application of mesoporous alumina in preparation of anti⁃iron contamination FCC catalyst[J].Petroleum Processing and Petrochemicals,2019,50(7):80-84.
|
| [26] |
袁程远,彭立,鞠冠男,等.镁改性FCC催化剂抗铁污染性能和机理研究[J].石油化工,2022,51(10):1167-1174.
|
|
YUAN Chengyuan, PENG Li, JU Guannan,et al.Study on anti⁃iron contamination performance and mechanism of magnesium⁃modified FCC catalyst[J].Petrochemical Technology,2022,51(10):1167-1174.
|