[1] |
Jimoh O A, Ariffin K S, Hussin H B, et al. Synjournal of precipitated calcium carbonate:a review[J]. Carbonates and Evaporites, 2018,33(2):331-346.
|
[2] |
Trushina D B, Bukreeva T V, Kovalchuk M V, et al. CaCO3 vaterite microparticles for biomedical and personal care application[J]. Materials Science & Engineering:C, 2014,45(12):644-658.
|
[3] |
Konopacka-Łyskawa D. Synjournal methods and favorable conditions for spherical vaterite precipitation:a review[J]. Crystals, 2019,9(4):2-16.
|
[4] |
蒋久信, 吴月, 何瑶, 等. 亚稳态球霰石相碳酸钙的调控制备进展[J]. 无机材料学报, 2017,32(7):681-690.
|
[5] |
Huang S C, Naka K, Chujo Y. A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly (acrylic acid)s[J]. Langmuir, 2007,23(24):12086-12095.
|
[6] |
Lai Y H, Chen L S, Bao W C, et al. Glycine-mediated,selective preparation of monodisperse spherical vaterite calcium carbonate in various reaction systems[J]. Crystal Growth & Design, 2015,15(3):1194-1200.
|
[7] |
Daria B T, Tatiana V B, Maria N A. Size-controlled synjournal of vaterite calcium carbonate by the mixing method:Aiming for nanosized particles[J]. Crystal Growth & Design, 2016,16(3):1311-1319.
|
[8] |
Pérez-Villarejo L, Takabait F, Mahtout L, et al. Synjournal of vaterite CaCO3 as submicron and nanosized particles using inorganic precursors and sucrose in aqueous medium[J]. Ceramics International, 2018,44(5):5291-5296.
|
[9] |
赵丽娜, 孔治国, 王继库. 碳酸钙中空微球的制备及机理[J]. 化工学报, 2012,43(6):1976-1980.
|
[10] |
郑天文, 陈雪梅. 球霰石碳酸钙微球的合成及其机理[J]. 材料科学与工程学报, 2018,36(3):258-264.
|
[11] |
王耀宣, 袁爱群, 周泽广, 等. 球霰石型纳米碳酸钙椭球形颗粒的合成[J]. 无机盐工业, 2020,52(1):54-58.
|
[12] |
谭婷婷, 仲剑初. 球形碳酸钙的控制合成研究[J]. 无机盐工业, 2019,51(12):30-34.
|
[13] |
陈银霞, 纪献兵, 景长勇. 花状球霰石碳酸钙微球的简易合成与表征[J]. 无机盐工业, 2018,50(3):28-30.
|
[14] |
张晓蕾, 邱勇波. 球霰石碳酸钙的制备及其稳定性研究[J]. 无机盐工业, 2018,50(2):46-49.
|
[15] |
丁杨, 任洋洋, 王丹, 等. 微乳液体系中形貌可控合成碳酸钙的研究[J]. 无机盐工业, 2017,49(6):33-36.
|
[16] |
黄文艺, 马蓝宇, 程昊, 等. 球霰石型碳酸钙微球的制备及在不同溶液中转变过程的研究[J]. 无机盐工业, 2017,49(5):18-21.
|
[17] |
Udrea I, Capat C, Olaru E A, et al. Vaterite synjournal via gas-liquid route under controlled pH conditions[J]. Industrial & Engineering Chemistry Research, 2012,51(24):8185-8193.
|
[18] |
Hadiko G, Han Y S, Fuji M, et al. Synjournal of hollow calcium carbonate particles by the bubble templating method[J]. Materials Letters, 2005,59(19/20):2519-2522.
|
[19] |
Boyjoo Y, Pareek V K, Liu J. Synjournal of micro and nano-sized calcium carbonate particles and their applications[J]. Materials Chemistry A, 2014,2(35):14270-14288.
|
[20] |
Konopacka-Łyskawa D, Koscielska B, Karczewski J, et al. The influence of ammonia and selected amines on the characteristics of calcium carbonate precipitated from calcium chloride solutions via carbonation[J]. Materials Chemistry and Physics, 2017,1931(6):13-18.
|
[21] |
王芬, 余军霞, 肖春桥, 等. CO2 碳化法制备微米级球霰石型食品碳酸钙的研究[J]. 硅酸盐通报, 2017,36(1):43-50.
|
[22] |
Svenskaya Y I, Fattah H, Inozemtseva O A, et al. Key parameters for size and shape-controlled synjournal of vaterite particle[J]. Crystal Growth & Design, 2018,18(1):331-337.
|
[23] |
Oral C M, Ercan B. Influence of pH on morphology,size and polymorph of room temperature synthesized calcium carbonate particles[J]. Powder Technology, 2018,339(11):781-788.
|
[24] |
Watanabe H, Yoshiaki M, Takeshi E, et al. Effect of initial pH on formation of hollow calcium carbonate particles by continuous CO2 gas bubbling into CaCl2 aqueous solution[J]. Advanced Powder Technology, 2009,20(1):89-93.
|
[25] |
Han Y S, Hadiko G, Fuji M, et al. Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method[J]. Crystal Growth, 2005,276(3/4):541-548.
|
[26] |
Han Y S, Fuji M, Shehukin D, et al. A new model for the synjournal of hollow particles via the bubble templating method[J]. Crystal Growth & Design, 2009,9(8):3771-3775.
|
[27] |
Radek S, Pérez-Estébanez M, Viani A, et al. Characterization of vaterite synthesized at sized at various temperatures and stirring velocities without use of additives[J]. Powder Technology, 2015,284(11):265-271.
|
[28] |
向乐凯, 李枫, 赵宁, 等. 二氧化碳鼓泡碳化法制备碳酸钙的研究[J]. 无机盐工业, 2016,48(8):46-51.
|
[29] |
Rodriguez-Blanco J D, Shaw S, Bots P, et al. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate[J]. Journal of Alloys & Compounds, 2012,536(supp_S1), S477-S479.
|
[30] |
Sun J, Wang L S, Zhao D F. Polymorph and morphology of CaCO3 in relation to precipitation conditions in a bubbling system[J]. Chinese Journal of Chemical Engineering, 2017,25(9):1335-1342.
|
[31] |
Takeshi O, Toshio S, Kiyoshi S. The formation and transformation mechanism of calcium carbonate in water[J]. Geochimica et Cosmochimica Acta, 1987,51(10):2757-2767.
|
[32] |
Zeng Y P, Cao J, Wang Z, et al. The formation of amorphous calcium carbonate and its transformation mechanism to crystalline CaCO3 in laminar microfluidics[J]. Crystal Growth & Design, 2018,18(3):1710-1721.
|
[33] |
Ding Y, Liu Y Y, Ren Y Y, et al. Controllable synjournal of all the anhydrous CaCO3 Polymorphs with various morphologies in CaCl2NH3-CO2 aqueous system[J]. Powder Technology, 2018,333(6):410-420.
|
[34] |
Wang Y S, Moo Y X, Chen C P, et al. Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyap-atite nanospheres[J]. Colloid and Interface Science, 2010,352(2):393-400.
|
[35] |
Vagenas N V, Gatsouli A, Kontoyannis C G. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectro-scopy[J]. Talanta, 2003,59(4):831-836.
|
[36] |
Han Y S, Hadiko G, Fuji M, et al. Crystallization and transforma-tion of vaterite at controlled pH[J]. Journal of Crystal Growth, 2006,289(1):269-274.
|