无机盐工业 ›› 2024, Vol. 56 ›› Issue (3): 144-154.doi: 10.19964/j.issn.1006-4990.2023-0333
• 催化材料 • 上一篇
任启霞1,2,3(), 杨坤1,2,3, 刘飞1,2,3(
), 姚梦琴1,2,3, 曹建新1,2,3
收稿日期:
2023-06-16
出版日期:
2024-03-10
发布日期:
2024-03-14
通讯作者:
刘飞(1982— ),男,博士,教授,主要研究方向为CO2资源利用化;E-mail:ce.feiliu@gzu.edu.cn。作者简介:
任启霞(1998— ),女,硕士研究生,主要研究方向为2加氢制甲醇;E-mail:995985627@qq.com。
基金资助:
REN Qixia1,2,3(), YANG Kun1,2,3, LIU Fei1,2,3(
), YAO Mengqin1,2,3, CAO Jianxin1,2,3
Received:
2023-06-16
Published:
2024-03-10
Online:
2024-03-14
摘要:
CO2加氢制甲醇是实现碳中和目标的有效途径。尽管已报道的ZnO/ZrO2催化剂具有高活性和稳定性,但其催化性能仍有望进一步提高。采用浸渍法制备得到一系列不同元素掺杂的Ma-ZnO x /ZrO2催化剂,并通过评价发现只有Ga促进了ZnO/ZrO2催化剂催化CO2加氢制甲醇。其中,5%Ga-ZnO x /ZrO2催化剂表现出优异的催化性能,在反应条件:P=3 MPa、T=320 ℃、V(H2)∶V(CO2)=4∶1、气体质量空速(WHSV)=24 000 mL/(g∙h)时CO2转化率为7.2%,甲醇选择性为81.0%,甲醇时空产率可达410 mg/(g∙h),是ZnO/ZrO2的1.26倍,且在反应100 h内催化性能无明显衰减。X射线光电子能谱(XPS)和电子顺磁共振(EPR)表征发现,适量Ga助剂的掺入可以促进催化剂中氧空位的形成。H2程序升温还原(H2-TPR)、CO2/H2程序升温脱附(CO2/H2-TPD)结果表明,Ga助剂的掺入增强了ZnO/ZrO2催化剂活性位点的活性,Ga-ZnO x /ZrO2催化剂表现出更强的CO2和H2吸附活化能力。原位漫反射傅里叶变换红外(in situ DRIFTS)结果表明,各催化剂合成甲醇均遵循甲酸盐-甲氧基路径,Ga助剂的掺入促进了甲醇中间体的形成,并且更有利于HCOO*物种向CH3O*物种的转化,从而提高甲醇产率。
中图分类号:
任启霞, 杨坤, 刘飞, 姚梦琴, 曹建新. 助剂对ZnO/ZrO2物化性质及催化性能的影响[J]. 无机盐工业, 2024, 56(3): 144-154.
REN Qixia, YANG Kun, LIU Fei, YAO Mengqin, CAO Jianxin. Effect of promoter on physicochemical properties and catalytic performance of ZnO/ZrO2[J]. Inorganic Chemicals Industry, 2024, 56(3): 144-154.
1 | DINCER I, JAVANI N, KARAYEL G K.Sustainable city concept based on green hydrogen energy[J].Sustainable Cities and Society,2022,87:104154. |
2 | OLAH G A.Beyond oil and gas:The methanol economy[J].Angewandte Chemie International Edition,2005,44(18):2636-2639. |
3 | ZHONG Jiawei, YANG Xiaofeng, WU Zhilian,et al.State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J].Chemical Society Reviews,2020,49(5):1385-1413. |
4 | QI Shichao, LIU Xiaoying, ZHU Rongrong,et al.Causation of catalytic activity of Cu-ZnO for CO2 hydrogenation to methanol[J].Chemical Engineering Journal,2022,430:132784. |
5 | YU Jiahui, LIU Shuai, MU Xueliang,et al.Cu-ZrO2 catalysts with highly dispersed Cu nanoclusters derived from ZrO2@ HKUST-1 composites for the enhanced CO2 hydrogenation to methanol[J].Chemical Engineering Journal,2021,419:129656. |
6 | ZHANG Liangcai, LIU Xinyu, WANG Hengwei,et al.Size-dependent strong metal-support interaction in Pd/ZnO catalysts for hydrogenation of CO2 to methanol[J].Catalysis Science & Technology,2021,11(13):4398-4405. |
7 | SUN Kaihang, RUI Ning, ZHANG Zhitao,et al.A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J].Green Chemistry,2020,22(15):5059-5066. |
8 | YUE Shengnan, SHEN Yongli, DENG Ziliang,et al.Coalescence and shape oscillation of Au nanoparticles in CO2 hydrogenation to methanol[J].Nanoscale,2021,13(43):18218-18225. |
9 | HU Jingting, YU Liang, DENG Jiao,et al.Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J].Nature Catalysis,2021,4(3):242-250. |
10 | ZHOU Shenghui, ZENG Huachun.Boxlike assemblages of few-layer MoS2 nanosheets with edge blockage for high-efficiency hydrogenation of CO2 to methanol[J].ACS Catalysis,2022,12(16):9872-9886. |
11 | CUI Pingping, SUN Ruyu, XIAO Linfei,et al.Exploring the effects of the interaction of carbon and MoS2 catalyst on CO2 hydrogenation to methanol[J].International Journal of Molecular Sciences,2022,23(9):5220. |
12 | JIANG Xiao, NIE Xiaowa, GUO Xinwen,et al.Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J].Chemical Reviews,2020,120(15):7984-8034. |
13 | PINHEIRO ARAÚJO T, MORALES-VIDAL J, ZOU Tangsheng,et al.Design of flame-made ZnZrO x catalysts for sustainable meth-anol synthesis from CO2(adv.energy mater.14/2023)[J].Advanc-ed Energy Materials,2023,13(14):2204122. |
14 | REN Qixia, YANG Kun, LIU Fei,et al.Role of the structure and morphology of zirconia in ZnO/ZrO2 catalyst for CO2 hydrogenation to methanol[J].Molecular Catalysis,2023,547:113280. |
15 | MARTIN O, MARTÍN A J, MONDELLI C,et al.Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenati-on[J].Angewandte Chemie International Edition,2016,55(21):6261-6265. |
16 | DANG Shanshan, GAO Peng, LIU Ziyu,et al.Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J].Journal of Catalysis,2018,364:382-393. |
17 | LI Zelong, WANG Jijie, QU Yuanzhi,et al.Highly selective conversion of carbon dioxide to lower olefins[J].ACS Catalysis,2017,7(12):8544-8548. |
18 | 杨浪浪,孟凡会,张鹏,等.ZrCdO x /SAPO-18双功能催化剂催化CO2加氢合成低碳烯烃性能[J].无机化学学报,2021,37(3):448-456. |
YANG Langlang, MENG Fanhui, ZHANG Peng,et al.Catalytic performance for CO2 hydrogenation to light olefins over ZrCdO x /SAPO-18 bifunctional catalyst[J].Chinese Journal of Inorganic Chemistry,2021,37(3):448-456. | |
19 | 杨坤,任启霞,董永刚,等.煅烧温度对ZnGaZrO x /SAPO-34催化性能的影响[J/OL].无机盐工业,2023.https://doi.org/10.19964/j.issn.1006-4990.2023-0233. |
YANG Kun, REN Qixia, DONG Yonggang,et al.Effect of calcination temperature on the catalytic performance of ZnGaZrO x /SAPO-34[J/OL].Inorganic Chemicals Industry,2023.https://doi.org/10.19964/j.issn.1006-4990.2023-0233. | |
20 | WANG Sen, WANG Pengfei, QIN Zhangfeng,et al.Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J].Journal of Catalysis,2020,391:459-470. |
21 | GAO Jia, SONG Fujiao, LI Yue,et al.Cu2In nanoalloy enhanced performance of Cu/ZrO2 catalysts for the CO2 hydrogenation to methanol[J].Industrial & Engineering Chemistry Research, 2020,59(27):12331-12337. |
22 | QI T, ZHAO Yiming, CHEN Shaoyun,et al.Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior methanol selectivity for CO2 hydrogenation[J].Molecular Catalysis,2021,514:111870. |
23 | ZHU Jiadong, CIOLCA D, LIU Liang,et al.Flame synthesis of Cu/ZnO-CeO2 catalysts:Synergistic metal-support interactions promote CH3OH selectivity in CO2 hydrogenation[J].ACS Catalysis,2021,11(8):4880-4892. |
24 | ZHANG Wenyu, WANG Sen, GUO Shujia,et al.Effective conversion of CO2 into light olefins over a bifunctional catalyst consisting of La-modified ZnZrO x oxide and acidic zeolite[J].Catalysis Science & Technology,2022,12(8):2566-2577. |
25 | SHA Feng, TANG Chizhou, TANG Shan,et al.The promoting role of Ga in ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol[J].Journal of Catalysis,2021,404:383-392. |
26 | ZHANG Wenyu, WANG Sen, GUO Shujia,et al.Effective conversion of CO2 into light olefins along with generation of low amoun-ts of CO[J].Journal of Catalysis,2022,413:923-933. |
27 | XU Di, HONG Xinlin, LIU Guoliang.Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol:Insight into hydrogen spillover[J].Journal of Catalysis,2021,393:207-214. |
28 | LEE K, ANJUM U, ARAÚJO T P,et al.Atomic Pd-promoted ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol[J].Applied Catalysis B:Environmental,2022,304:120994. |
29 | LEE K, MENDES P C D, JEON H,et al.Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrO x [J].Nature Communications,2023,14:819. |
30 | ROSSI M A, RASTEIRO L F, VIEIRA L H,et al.Investigation of in promotion on Cu/ZrO2 catalysts and application in CO2 hydrogenation to methanol[J].Catalysis Letters,2023,153(9):2728-2744. |
31 | ZHOU Yue, LIU Fei, GENG Shuo,et al.Tuning the content of S vacancies in MoS2 by Cu doping for enhancing catalytic hydrogenation of CO2 to methanol[J].Molecular Catalysis,2023,547:113288. |
32 | AN Xin, LI Jinlu, ZUO Yizan,et al.A Cu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation to methanol cataly- st[J].Catalysis Letters,2007,118(3):264-269. |
33 | VAN TRAN T, LE-PHUC N, NGUYEN T H,et al.Application of NaA membrane reactor for methanol synthesis in CO2 hydrogenation at low pressure[J].International Journal of Chemical Reactor Engineering,2017,16(4).Doi:10.1515/ijcre-2017-0046. |
34 | WANG Guo, MAO Dongsen, GUO Xiaoming,et al.Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-M x O y catalysts(M=Cr,Mo and W)[J].International Journal of Hydrogen Energy,2019,44(8):4197-4207. |
35 | GAO Peng, LI Feng, ZHAO Ning,et al.Influence of modifier (Mn,La,Ce,Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J].Applied Catalysis A:General,2013,468:442-452. |
36 | ZHANG Peng, MA Lixuan, MENG Fanhui,et al.Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrO x combined with SAPO-34[J].Applied Catalysis B:Environmental,2022,305:121042. |
37 | HUANG Chaojie, WU Zhaoxuan, LUO Hu,et al.CO2 hydrogenation to methanol over PdZnZr solid solution:Effects of the PdZn alloy and oxygen vacancy[J].ACS Applied Energy Materials,2021,4(9):9258-9266. |
38 | HAN Zhe, TANG Chizhou, SHA Feng,et al.CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure[J].Journal of Catalysis,2021,396:242- 250. |
39 | CUI Wengang, ZHANG Qiang, ZHOU Lei,et al.Hybrid MOF template-directed construction of hollow-structured In2O3@ZrO2 heterostructure for enhancing hydrogenation of CO2 to metha- nol[J].Small,2023,19(1):e2204914. |
40 | WEI Yanling, LIU Fei, MA Jun,et al.Catalytic roles of In2O3 in ZrO2-based binary oxides for CO2 hydrogenation to methanol[J].Molecular Catalysis,2022,525:112354. |
41 | XIN Qing, GUO Hongyu, WANG Yongchao,et al.Indium-promoted ZnZrO x /nano-ZSM-5 for efficient conversion of CO2 to aromatics with high selectivity[J].Journal of Environmental Che- mical Engineering,2022,10(3):108032. |
42 | 肖亦寒,曹建新,刘飞,等.焙烧温度对MnZnO x 物化性质及催化性能的影响[J].无机盐工业,2021,53(4):95-100. |
XIAO Yihan, CAO Jianxin, LIU Fei,et al.Effect of calcination temperature on physicochemical properties and catalytic performance of MnZnO x [J].Inorganic Chemicals Industry,2021,53(4):95-100. | |
43 | 范兴其,姚梦琴,刘飞,等.制备方法对Al2O3-CeO2物化性质及CO2加氢制甲醇催化性能的影响[J].人工晶体学报,2021,50(9):1745-1755,1795. |
FAN Xingqi, YAO Mengqin, LIU Fei,et al.Effect of preparation methods on physicochemical properties of Al2O3-CeO2 and its catalytic performance of CO2 hydrogenation to methanol[J].Journal of Synthetic Crystals,2021,50(9):1745-1755,1795. | |
44 | ZHOU Cheng, SHI Jiaqing, ZHOU Wei,et al.Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J].ACS Catalysis,2020,10(1):302-310. |
45 | TEMVUTTIROJN C, POO-ARPORN Y, CHANLEK N,et al.Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnO x /ZrO2 catalysts[J].Industrial & Engineering Chemistry Research,2020,59(13):5525-5535. |
46 | CHEN Guoqing, YU Jun, LI Gonghui,et al.Cu+-ZrO2 interfacial sites with highly dispersed copper nanoparticles derived from Cu@UiO-67 hybrid for efficient CO2 hydrogenation to metha-nol[J].International Journal of Hydrogen Energy,2023,48(7):2605-2616. |
47 | 程文强,宋夫交,高佳,等.Zn0.2Zr0.8O x 固溶体催化剂的制备及其催化甲醇合成性能[J].合成化学,2020,28(4):308-313. |
CHENG Wenqiang, SONG Fujiao, GAO Jia,et al.Preparation of Zn0.2Zr0.8O x solid solution and catalytic properties for methanol synthesis[J].Chinese Journal of Synthetic Chemistry,2020, 28(4):308-313. | |
48 | KATTEL S, YAN Binhang, YANG Yixiong,et al.Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J].Journal of the American Chemical Society,2016,138(38):12440-12450. |
49 | WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P,et al.CO2 hydrogenation to methanol over Cu/ZrO2 catalysts:Effects of zirconia phases[J].Chemical Engineering Journal,2016,293:327-336. |
50 | WANG Sen, ZHANG Li, WANG Pengfei,et al.Highly effective conversion of CO2 into light olefins abundant in ethene[J].Chem,2022,8(5):1376-1394. |
51 | MOU Jun, FAN Xingqi, LIU Fei,et al.CO2 hydrogenation to lower olefins over Mn2O3-ZnO/SAPO-34 tandem catalysts[J].Chemical Engineering Journal,2021,421:129978. |
52 | HINA A, NANCOLLAS G H, GRYNPAS M.Surface induced constant composition crystal growth kinetics studies.The brushite-gypsum system[J].Journal of Crystal Growth,2001,223(1/2):213-224. |
53 | HUANG Xuquan, JIANG Mingming, ZHAO Xiaorong,et al.Mechanical properties and hydration mechanisms of high-strength fluorogypsum-blast furnace slag-based hydraulic cementitious binder[J].Construction and Building Materials,2016,127:137- 143. |
54 | REN Zhisheng, WANG Lu, WANG Hao,et al.Stabilization and solidification mechanism of Pb in phosphogypsum slag-based cementitious materials[J].Construction and Building Materials,2023,368:130427. |
55 | TREZZA M A, LAVAT A E.Analysis of the system 3CaO·Al2O3-CaSO4·2H2O-CaCO3-H2O by FT-IR spectroscopy[J].Cement and Concrete Research,2001,31(6):869-872. |
56 | ÁLVAREZ-AYUSO E, NUGTEREN H W.Synthesis of ettringite:A way to deal with the acid wastewaters of aluminium anodising industry[J].Water Research,2005,39(1):65-72. |
57 | QIAN G R, SHI J, CAO Y L,et al.Properties of MSW fly ash-calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals[J].Journal of Hazardous Materials,2008,152(1):196-203. |
[1] | 马骏, 金央, 李军, 陈明, 王玉滨. 盘管式流量逆变微反应器中光化学合成H2O2的研究[J]. 无机盐工业, 2025, 57(2): 50-56. |
[2] | 孙庆昊, 李克艳, 郭新闻. Pd/ZnIn2S4纳米片光催化苯甲醇氧化耦合产氢的研究[J]. 无机盐工业, 2025, 57(1): 113-119. |
[3] | 李永恒, 米晓彤, 张培培. 全结晶纳米ZSM-5分子筛团聚体的合成及在甲苯甲基化中的应用[J]. 无机盐工业, 2024, 56(5): 135-140. |
[4] | 占思进, 刘仕轲, 刘飞, 姚梦琴, 曹建新. ZnO-CeO2制备及催化性能研究[J]. 无机盐工业, 2024, 56(3): 137-143. |
[5] | 杨坤, 任启霞, 董永刚, 刘飞, 姚梦琴, 曹建新. 煅烧温度对ZnGaZrO x /SAPO-34催化性能的影响[J]. 无机盐工业, 2024, 56(2): 136-145. |
[6] | 李贺, 张利杰, 张凯, 苏晋, 姚朝阳, 曾贤君, 郭春垒, 孙彦民. 甲醇氧化制甲醛工艺及催化剂研究进展[J]. 无机盐工业, 2023, 55(11): 12-18. |
[7] | 杨庭龙,王富中,刘飞. 锆基双金属氧化物催化剂硫中毒的研究[J]. 无机盐工业, 2023, 55(1): 151-158. |
[8] | 季超,武鲁明,李滨,臧甲忠,于海斌. 甲醇制烯烃催化剂SAPO-34分子筛的改性研究进展[J]. 无机盐工业, 2022, 54(7): 1-9. |
[9] | 彭晓伟,王银斌,臧甲忠,于海斌. 金属改性甲醇芳构化催化剂的制备及性能研究[J]. 无机盐工业, 2021, 53(9): 104-108. |
[10] | 肖亦寒,曹建新,刘飞,易芸. 焙烧温度对MnZnOx物化性质及催化性能的影响[J]. 无机盐工业, 2021, 53(4): 95-100. |
[11] | 李孝国, 李永恒, 侯章贵, 韩国栋, 肖家旺, 郜金平, 常洋. 甲苯甲醇烷基化制对二甲苯催化剂中试反应性能研究[J]. 无机盐工业, 2021, 53(3): 97-101. |
[12] | 侯章贵,朱倩倩,李孝国,李永恒,常洋,张安峰,郭新闻. 改性介微孔ZSM-5分子筛催化剂制备及催化甲苯甲醇烷基化反应性能[J]. 无机盐工业, 2020, 52(9): 96-99. |
[13] | 李向果,郭淼,姚会敏,吕静. 菱形二氧化铈的水热合成及发光机理研究[J]. 无机盐工业, 2020, 52(6): 30-35. |
[14] | 白红亮,王俊生,王艳. Au-Pd/ZrO2可见光下催化苯甲醇氧化反应条件探索[J]. 无机盐工业, 2020, 52(4): 100-103. |
[15] | 刘志开1,曹 辉2,王天云1,韩国栋2,刘 意1,张 燚1. 新型非常规天然气直接催化转化制芳烃催化剂的研究[J]. 无机盐工业, 2019, 51(12): 83-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|