无机盐工业 ›› 2021, Vol. 53 ›› Issue (6): 79-86.doi: 10.19964/j.issn.1006-4990.2021-0226
沈威(),王思楠,梁雪梅,韦金云,潘玉洁,农甜甜,周燕(
),谭学才,黄在银
收稿日期:
2021-03-28
出版日期:
2021-06-10
发布日期:
2021-07-08
作者简介:
沈威(1994— ),男,硕士研究生,从事MOFs材料的电化学性能研究;E-mail: 基金资助:
Shen Wei(),Wang Sinan,Liang Xuemei,Wei Jinyun,Pan Yujie,Nong Tiantian,Zhou Yan(
),Tan Xuecai,Huang Zaiyin
Received:
2021-03-28
Published:
2021-06-10
Online:
2021-07-08
摘要:
金属有机框架(MOFs)材料因其大的比表面积、可调控的孔道结构和丰富的活性位点引起了国内外学者们的广泛关注。近年来MOFs基材料广泛应用于能量储存与转化领域,但大多数MOFs基材料的低稳定性和低导电性等缺陷限制了其实际应用。通过对MOFs基材料进行改性,如采用共轭度高的有机配体以增加MOFs材料的稳定性,或MOFs衍生物以提高其氧化还原活性位点和导电性,从而达到提高MOFs基电极材料的电化学性能。主要介绍了原始MOFs及其衍生材料如碳材料、金属氧化物、金属硫化物、金属氢氧化物和金属磷化物等在超级电容器电极材料中的最新研究进展。研究表明,多金属MOFs材料或多金属MOFs衍生物有利于提高电极材料的电化学性能,而导电MOFs材料或MOFs衍生物中的碳材料有利于提高电极材料的导电性。最后对MOFs基电极材料在电化学储能领域中的研究做出了展望,指出MOFs基材料的形貌、组分和导电性是未来研究的发展方向。
中图分类号:
沈威,王思楠,梁雪梅,韦金云,潘玉洁,农甜甜,周燕,谭学才,黄在银. 纳米MOFs及其衍生物在超级电容器中的研究进展[J]. 无机盐工业, 2021, 53(6): 79-86.
Shen Wei,Wang Sinan,Liang Xuemei,Wei Jinyun,Pan Yujie,Nong Tiantian,Zhou Yan,Tan Xuecai,Huang Zaiyin. Research progress of nano MOFs and their derivatives for supercapacitors[J]. Inorganic Chemicals Industry, 2021, 53(6): 79-86.
表1
原始MOFs电极材料的性能指标.
电极材料 | 比电容/ (F·g-1) | 电流密度/ (A·g-1) | 电极材料 | 比电容/ (F·g-1) | 电流密度/ (A·g-1) |
---|---|---|---|---|---|
Co-LMOFs[ | 2 474.00 | 1.0 | Ni/Co-MOFs[ | 1 049.00 | 1.00 |
Co-MOFs[ | 2 564.00 | 1.0 | NiCo-MOFs Nanosheets[ | 1 202.10 | 1.00 |
Cu-CAT Nanowire[ | 202.00 | 0.5 | NiCo-MOFs[ | 1 333.00 | 2.00 |
Cu-DBC[ | 479.00 | 0.2 | Zn-doped Ni-MOFs[ | 1 620.00 | 0.25 |
Ni-MOFs[ | 1 127.00 | 0.5 | NiCo-BDC[ | 1 700.40 | 1.00 |
Ni-MOFs[ | 1 518.80 | 1.0 | CoCuNi-bdc/NF[ | 2 892.00 | 1.00 |
NiCo- MOFs-1[ | 901.60 | 5.0 |
表2
MOFs衍生物电极材料的性能指标
电极材料 | 比电容/ (F·g-1) | 电流密度/ (A·g-1) | |
---|---|---|---|
碳材料 | NCP-CNS[ | 300.0 | 1.0 |
NPCN/G[ | 306.4 | 0.2 | |
NGHPCF[ | 326.0 | 0.5 | |
C-S-900[ | 369.0 | 10 mV/s | |
carbon polyhedrons-CNT[ | 381.2 | 5 mV/s | |
金属 氧化物 | Co3O4[ | 1 110.0 | 12.5 |
Co3O4[ | 1 216.4 | 1.0 | |
Co3O4[ | 1 680.0 | 0.5 | |
CuCo2O4[ | 1 700.0 | 2.0 | |
Zn-Co-O@CC[ | 1 750.0 | 1.5 | |
Ni-Co oxide[ | 1 900.0 | 2.0 | |
金属 硫化物 | CoS[ | 1 812.0 | 5 mV/s |
CoS2@CNTs[ | 825.0 | 0.5 | |
Co9S8@C[ | 1 887.0 | 1.0 | |
NiS/rGO[ | 744 C/g | 1.0 | |
Ni/Ni3S2/CNFs[ | 830.0 | 0.2 | |
NiS2@C[ | 833.0 | 0.5 | |
Ni3S4/CNTs[ | 1 489.9 | 1.0 | |
NiCo2S4[ | 1 354.4 C/g | 1.0 | |
NiCo2S4/Co9S8[ | 2 390.2 | 1.0 | |
NiCo-S[ | 3 724.0 | 1.0 | |
Ni3S2@Co9S8/N-HPC[ | 1 970.5 | 0.5 | |
金属 氢氧化物 | NiCo-LDHs[ | 1 272 C/g | 2.0 |
NiCo-LDH/GNR[ | 1 765.0 | 1.0 | |
金属磷化物 | Ni2P/C[ | 1 676.0 | 1.0 |
CoP@Ni2P[ | 2 644.0 | 1.0 |
[1] | Shao Y, El-Kady M F, Sun J, et al. Design and mechanisms of asy-mmetric supercapacitors[J]. Chemical Reviews, 2018,118(18):9233-9280. |
[2] | Chen X, Paul R, Dai L M, et al. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017,4(3):453-489. |
[3] | Trickett C A, Helal A, Al Maythalony B A, et al. The chemistry of metal-organic frameworks for CO2 capture,regeneration and conver-sion[J]. Nature Reviews Materials, 2017,2:17045-17060. |
[4] | Wei Y S, Zhang M, Zou R Q, et al. Metal-organic framework-based catalysts with single metal sites[J]. Chemical Reviews, 2020,120(21):12089-12174. |
[5] | Zhang Y M, Yuan S, Day G, et al. Luminescent sensors based on me-tal-organic frameworks[J]. Coordination Chemistry Reviews, 2018,354:28-45. |
[6] | Xiao X, Zou L L, Pang H, et al. Synjournal of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications[J]. Chemical Society Reviews, 2020,49(1):301-331. |
[7] | Wang L, Han Y Z, Feng X, et al. Metal-organic frameworks for ener-gy storage:Batteries and supercapacitors[J]. Coordination Chem-istry Reviews, 2016,307:361-381. |
[8] | 陈丹, 杨蓉, 张卫华, 等. 有机金属骨架材料在电化学储能领域中的研究进展[J]. 化工进展, 2018,37(2):628-636. |
[9] | 李怡霏, 陈言权, 陈雪珂, 等. 金属有机骨架材料在超级电容器中的应用进展[J]. 上海工程技术大学学报, 2019,33(2):97-101. |
[10] | Liu X, Shi C, Zhai C, et al. A Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode mate-rial[J]. ACS Applied Materials & Interfaces, 2016,8(7):4585-4591. |
[11] | Yang J, Ma Z, Gao W, et al. Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode[J]. Chemistry-A European Journal, 2017,23(3):631-636. |
[12] | Li W H, Ding K, Tian H R, et al. Conductive metal-organic frame-work nanowire array electrodes for high-performance solid-state supercapacitors[J]. Advanced Functional Materials, 2017,27.Doi: 10.1002/adfm.201770165. |
[13] | Liu J, Zhou Y, Xie Z, et al. Conjugated copper-catecholate frame-work electrodes for efficient energy storage[J]. Angewandte Che-mie International Edition, 2020,59(3):1081-1086. |
[14] | Yang J, Xiong P, Zheng C, et al. Metal-organic frameworks:a new promising class of materials for a high performance supercapacitor electrode[J]. Journal of Materials Chemistry A, 2014,39(2):16640-16644. |
[15] | Yang C, Li X, Yu L, et al. A new promising Ni-MOF superstruc-ture for high-performance supercapacitors[J]. Chemical Commu-nications, 2020,56(12):1803-1806. |
[16] | Chi Y, Yang W, Xing Y, et al. Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage[J]. Nanoscale, 2020,12(19):10685-10692. |
[17] | Gholipour-Ranjbar H, Soleimani M, Naderi H R, et al. Application of Ni/Co-based metal-organic frameworks(MOFs) as an advanced electrode material for supercapacitors[J]. New Journal of Chemi-stry, 2016,40(11):9187-9193. |
[18] | Wang Y, Liu Y, Wang H, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes[J]. ACS Applied Energy Materials, 2019,2(3):2063-2071. |
[19] | Liang Y, Yao W, Duan J, et al. Nickel cobalt bimetallic metal-orga-nic frameworks with a layer-and-channel structure for high-per-formance supercapacitors[J]. Journal of Energy Storage, 2021,33. Doi: 10.1016/j.est.2020.102149. |
[20] | Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. Journal of Materials Che-mistry A, 2014,2(44):19005-19010. |
[21] | Ma H M, Yi J W, Li S, et al. Stable bimetal-MOF ultrathin nano-sheets for pseudocapacitors with enhanced performance[J]. Inor-ganic Chemistry, 2019,58(15):9543-9547. |
[22] | Mohd Zain N K, Vijayan B L, Misnon I I, et al. Direct growth of triple cation metal-organic framework on a metal substrate for elec-trochemical energy storage[J]. Industrial & Engineering Chemistry Research, 2018,58(2):665-674. |
[23] | Liang Z, Qu C, Guo W, et al. Pristine metal-organic frameworks and their composites for energy storage and conversion[J], Advanced Materials, 2018,30(37).Doi: 10.1002/adma.201702891. |
[24] | Hou C C, Xu Q. Metal-organic frameworks for energy[J], Advanc-ed Energy Materials, 2018,9(23).Doi: 10.1002/aenm.201801307. |
[25] | Zheng S, Li X, Yan B, et al. Transition-metal(Fe,Co,Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials, 2017,7(18).Doi: 10.1002/aenm.201602733. |
[26] | Zhao Z, Liu S, Zhu J, et al. Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2018,10(23):19871-19880. |
[27] | Gan Q, Liu S, Zhao K, et al. Graphene supported nitrogen-doped porous carbon nanosheets derived from zeolitic imidazolate frame-work for high performance supercapacitors[J]. RSC Advances, 2016,6(82):78947-78953. |
[28] | Yao Y, Liu P, Li X, et al. Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination or-ganic framework modification and their application in supercapac-itors[J]. Dalton Transactions, 2018,47(21):7316-7326. |
[29] | Cao X M, Sun Z J, Zhao S Y, et al. MOF-derived sponge-like hier-archical porous carbon for flexible all-solid-state supercapacito-rs[J]. Materials Chemistry Frontiers, 2018,2(9):1692-1699. |
[30] | Liu Y, Li G, Guo Y, et al. Flexible and binder-free hierarchical po-rous carbon film for supercapacitor electrodes derived from MOFs/CNT[J]. ACS Applied Materials & Interfaces, 2017,9(16):14043-14050. |
[31] | Zhang Y Z, Wang Y, Xie Y L, et al. Porous hollow Co3O4 with rhom-bic dodecahedral structures for high-performance supercapacito-rs[J]. Nanoscale, 2014,6(23):14354-14359. |
[32] | Wei G, Zhou Z, Zhao X, et al. Ultrathin metal-organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2018,10(28):23721-23730. |
[33] | Yang J, Wei F, Sui Y, et al. Co3O4 nanocrystals derived from a ze-olitic imidazolate framework on Ni foam as high-performance su-percapacitor electrode material[J]. RSC Advances, 2016,6(66):61803-61808. |
[34] | Ensafi A A, Moosavifard S E, Rezaei B, et al. Engineering onion-like nanoporous CuCo2O4 hollow spherees derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018,6(22):10497-10506. |
[35] | Javed M S, Shaheen N, Hussain S, et al. An ultra-high energy den-sity flexible asymmetric supercapacitor based on hierarchical fab-ric decorated with 2D bimetallic oxide nanosheets and MOF-deri-ved porous carbon polyhedral[J]. Journal of Materials Chemistry A, 2019,7(3):946-957. |
[36] | Guan B Y, Kushima A, Yu L, et al. Coordination polymers derived general synjournal of multishelled mixed metal-oxide particles for hybrid supercapacitors[J], Advanced Materials, 2017,29(17). Doi: 10.1002/adma.201605902. |
[37] | Jiang Z, Lu W, Li Z, et al. Synjournal of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014,2(23):8603-8606. |
[38] | Zou K Y, Liu Y C, Jiang Y F, et al. Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-derived CoS 2@CNTs with tun-able pore diameters for supercapacitors[J]. Inorganic Chemistry, 2017,56(11):6184-6196. |
[39] | Sun S, Luo J, Qian Y, et al. Metal-organic framework derived hon-eycomb Co9S8@C composites for high-performance supercapacito-rs[J]. Advanced Energy Materials, 2018,8(25).Doi: 10.1002/aenm.201801080. |
[40] | Qu C, Zhang L, Meng W, et al. MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacito-rs[J]. Journal of Materials Chemistry A, 2018,6(9):4003-4012. |
[41] | Tian D, Chen S, Zhu W, et al. Metal-organic framework derived hierarchical Ni/Ni3S2 decorated carbon nanofibers for high-perfor-mance supercapacitors[J]. Materials Chemistry Frontiers, 2019,3(8):1653-1660. |
[42] | Li Z X, Yang B L, Jiang Y F, et al. Metal-directed assembly of five 4-connected MOFs:One-pot syntheses of MOF-derived MxSy@C composites for photocatalytic degradation and supercapacitors[J]. Crystal Growth & Design, 2018,18(2):979-992. |
[43] | Yang Y, Li M L, Lin J N, et al. MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor[J]. Inorganic Chemistry, 2020,59(4):2406-2412. |
[44] | Ouyang Y, Zhang B, Wang C, et al. Bimetallic metal-organic frame-work derived porous NiCo2S4 nanosheets arrays as binder-free elec-trode for hybrid supercapacitor[J]. Applied Surface Science, 2021,542.Doi: 10.1016/j.apsusc.2020.148621. |
[45] | Liu Y, Ma Z, Niu H, et al. MOF-derived Co9S8 polyhedrons on NiCo2S4 nanowires for high-performance hybrid supercapacitors[J]. Inorganic Chemistry Frontiers, 2020,7(21):4092-4100. |
[46] | Zheng L, Song J, Ye X, et al. Construction of self-supported hier-archical NiCo-S nanosheet arrays for supercapacitors with ultra-high specific capacitance[J]. Nanoscale, 2020,12(25):13811-13821. |
[47] | Wang S F, Xiao Z Y, Zhai S R, et al. Construction of strawberry-like Ni3S2@Co9S8 heteronanoparticle-embedded biomass-derived 3D N-doped hierarchical porous carbon for ultrahigh energy den-sity supercapacitors[J]. Journal of Materials Chemistry A, 2019,7(29):17345-17356. |
[48] | Ramachandran R, Lan Y, Xu Z X, et al. Construction of NiCo-lay-ered double hydroxide microspheres from Ni-MOFs for high-per-formance asymmetric supercapacitors[J]. ACS Applied Energy Materials, 2020,3(7):6633-6643. |
[49] | Jin H, Yuan D, Zhu S, et al. Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors[J]. Dalton Transactions, 2018,47(26):8706-8715. |
[50] | Liu S, Xu Y, Wang C, et al. Metal-organic framework derived Ni2P/C hollow microspheres as battery-type electrodes for battery-supercapacitor hybrids[J]. ChemElectroChem, 2019,6(21):5511-5518. |
[51] | Jiang L, Yan M, Sun L, et al. Hierarchical CoP@Ni2P core-shell nanosheets for ultrahigh energy density asymmetric supercapaci-tors[J]. Inorganic Chemistry Frontiers, 2020,7(16):3030-3038. |
[52] | Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for me-tal-organic framework-derived nanoporous carbons toward super-capacitor applications[J]. Accounts of Chemical Research, 2016,49(12):2796-2806. |
[53] | 李璐, 高长青, 刘怡琳, 等. 氮杂化介孔碳制备方法及在超级电容器中的应用进展[J]. 无机盐工业, 2021,53(3):24-29. |
[54] | Salunkhe R R, Kaneti Y V, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applica-tions:Progress and prospects[J]. ACS Nano, 2017,11(6):5293-5308. |
[1] | 张飞刚, 刘中利. CuO/g-C3N4复合材料在有机染料降解和超级电容器中的应用研究[J]. 无机盐工业, 2025, 57(1): 129-136. |
[2] | 吴晴晴, 许雪棠, 王凡. 高负载锌钴基碱式碳酸盐电极材料的电容性能研究[J]. 无机盐工业, 2024, 56(7): 46-54. |
[3] | 王建芳, 杨和平, 李凯斌, 丛世强, 张柏洁, 郭珊. C3N4/MnCo2S4复合材料的制备及其电容性能研究[J]. 无机盐工业, 2023, 55(7): 70-74. |
[4] | 许雪棠, 王煦凯, 张申鹤, 黄美香, 农舒柳, 许诺. 偏钒酸根掺杂的NiCo-LDH电极的制备及性能研究[J]. 无机盐工业, 2023, 55(5): 52-58. |
[5] | 蒋甜甜,许雪棠,王凡. 卤离子调控的镍钴基电极材料生长及电容影响研究[J]. 无机盐工业, 2022, 54(8): 66-73. |
[6] | 张天亮,李军,熊巍,张海燕,陶晓秋. 碳酸钾活化一步法制备高比表活性炭及其电容性能的研究[J]. 无机盐工业, 2022, 54(4): 159-164. |
[7] | 王典,苏琼,庞少峰,曹世军,康莉会,梁丽春,王彦斌,李朝霞. 基于氧化铁/生物质碳复合材料的高性能超级电容器研究[J]. 无机盐工业, 2022, 54(3): 59-65. |
[8] | 赵志超,王洪林,王侠,孙刚,赵翠莲,孙楠楠. 水热法可控制备NiMoO4纳米片微球及其超级电容器性能[J]. 无机盐工业, 2022, 54(2): 60-64. |
[9] | 梁群芳,许雪棠,王凡. 基于阴离子交换反应的NiMn-LDH电极电容性能提升研究[J]. 无机盐工业, 2022, 54(2): 38-44. |
[10] | 易金亮,杨敏,宋方祥,陈前林. 木耳碳基硫化钴复合材料的制备及电化学性能研究[J]. 无机盐工业, 2022, 54(12): 60-67. |
[11] | 王月香,邵兰燕,徐天男,蔡彩红,袁俊生,张英武. 垃圾焚烧飞灰中氯元素存在形态及深度脱氯的研究[J]. 无机盐工业, 2021, 53(5): 78-83. |
[12] | 张豪,王立艳,李英奇,肖姗姗,毕菲,赵丽. 泡沫镍表面原位生长纳米花锌钴氢氧化物电极材料及电化学性能研究[J]. 无机盐工业, 2021, 53(5): 61-65. |
[13] | 李璐,高长青,刘怡琳,王雪,李建生,刘炳光. 氮杂化介孔碳制备方法及在超级电容器中的应用进展[J]. 无机盐工业, 2021, 53(3): 24-29. |
[14] | 张硕嘉,杨玉彬,唐 宇,迟莉萍,徐 冰. 高活性Fe2O3@Ni复合电极制备及电化学性能研究[J]. 无机盐工业, 2019, 51(7): 24-27. |
[15] | 赵宇,张硕嘉,徐冰,于越,孙小卉. 锌基复合电极原位水热合成和电化学性能研究[J]. 无机盐工业, 2019, 51(6): 21-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|