Inorganic Chemicals Industry ›› 2024, Vol. 56 ›› Issue (11): 15-29.doi: 10.19964/j.issn.1006-4990.2024-0077
• New energy battery materials • Previous Articles Next Articles
WAN Feng(), YAN Yingchun, FAN Zhuangjun(
)
Received:
2024-02-23
Online:
2024-11-10
Published:
2024-04-02
Contact:
FAN Zhuangjun
E-mail:1140445117@qq.com;fanzhj666@163.com
CLC Number:
WAN Feng, YAN Yingchun, FAN Zhuangjun. Research progress and prospect of halide solid electrolytes[J]. Inorganic Chemicals Industry, 2024, 56(11): 15-29.
Fig.1
ccp structure of Li x ScCl3+x (a)[28],hcp structure of Li3YCl6(b)[26],spinel structure of α-Li2ZrCl6,spinel structure of β-Li2ZrCl6(c)[47],WT spectra of 1.6Li2O-TaCl5,1.8Li2O-TaCl5 at Ta L3-edge with a k2 weighting(d)[18],local structures of xLi2O-TaCl5 amorphous solid electrolytes(e)[18],schematic diagram of surface-bulk heterogeneity in BM-SmCl3·0.5LiCl(f)[19], and schematic diagram of heterogeneous halide composites(g)[48]"
Fig.2
Schematic diagram of Li3InCl6 reaction mechanism in air environment(a)[61],photos of macroscopic morphology changes of Li3InCl6 powder and Li3InCl6 pellets over time(b)[61],mechanism schematic diagram of air-stability properties and structural reversibility for Li2ZrCl6 and Li2.8Zr0.2In0.8Cl6 electrolytes(c)[62],schematic diagram of humidity tolerance of hc-Li2+x Zr1-x In x Cl6 (0≤x≤1)(d)[64]"
Fig.3
Schematic band diagrams of HOMO and LUMO of different classes of electrolytes(a)[65],calculated thermodynamic equilibrium voltage profile and phase equilibria of LYC and LYB(b)[66],calculated thermodynamics intrinsic electrochemical windows of Li-M-X ternary fluorides,chlorides,bromides,iodides,oxides,and sulfides,M is a metal cation at its highest common valence state(c)[66],calculated electrochemical windows of Li3MF6(M=Al,Ti,Cr,Sc,Ga,In)(d)[30],non-reactive and thermodynamically stable interface(e),reactive and mixed conducting interphase (MCI)(f),and reactive and metastable solid-electrolyte interphase (SEI)(g)[69]"
Fig.4
Schematic illustration of lithium metal deposition on SE with an argon sputter gun and subsequent X-ray photoelectron spectroscopy,X-ray photoelectron(a)[72],In 3d(b),auger In MNN(c)[72] and Li 1s spectra during/after lithium deposition on Li3InCl6(d),schematic of digital of LYC-C-coated NCA electrodes for which carbon additives and LYC are added to facilitate electronic conduction pathways(e)[76],rate capabilities at 30 ℃ for LYC-C (or LYC) coated electrodes(f)[76],and calculated thermodynamic equilibrium voltage profiles and phase equilibria for Li2ZrCl5.6F0.4(g)[80]"
Fig.5
Impedance evolution of LiCoO2-Li3InCl6|Li3InCl6|In cells during cycling[14](a),XPS spectra of pristine annealed-Li3InCl6,LiCoO2--Li3InCl6 cathode composites,LiCoO2-Li3InCl6 cathode after first charge,and LiCoO2-LIC cathode after 10 cycles,In L-edge and Cl K-edge XANES spectra of pristine annealed-LIC,LiCoO2-Li3InCl6 cathode composite,and LiCoO2-Li3InCl6 cathode composites collected after first charge and after first discharge(b)[14],illustration of in-situ synthesis of Li3InCl6 on LiCoO2(LIC@LCO)(c)[82],calculated electrochemical stability windows of Li3N,Li2O,LiF,LiAlO2,Li3PO4 and LiAlF4,illustration of ALD synthesis of LiAlF4 on NMC-811(d)[16],calculated mutual reaction enthalpy between SSE and LiCoO2 as a function of mixing ratio and the corresponding phase equilibria at lowest point along the energy convex hull(e)[28],proposed mechanism of interfacial degradation during aging(f)[83],and Nyquist plots of composite cathodes aged at 70 ℃ for prolonged period(g)[83]"
1 | 余洪文,胡社军,侯贤华,等.锂离子电池正极材料LiFePO4的改性研究[J].材料导报,2008,22(S1):235-237. |
2 | TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359- 367. |
3 | LEE Yonggun, FUJIKI S, JUNG C,et al.High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J].Nature Energy,2020,5:299-308. |
4 | MANTHIRAM A, YU Xingwen, WANG Shaofei.Lithium battery chemistries enabled by solid-state electrolytes[J].Nature Reviews Materials,2017,2(4):16103. |
5 | HAN Xiaogang, GONG Yunhui, FU K K,et al.Negating interfacial impedance in garnet-based solid-state Li metal batteries[J].Nature Materials,2017,16(5):572-579. |
6 | WANG Chengwei, FU Kun, KAMMAMPATA S P,et al.Garnet-type solid-state electrolytes:Materials,interfaces,and batteries[J].Chemical Reviews,2020,120(10):4257-4300. |
7 | 李泓,许晓雄.固态锂电池研发愿景和策略[J].储能科学与技术,2016,5(5):607-614. |
LI Hong, XU Xiaoxiong.R & D vision and strategies on solid lithium batteries[J].Energy Storage Science and Technology,2016,5(5):607-614. | |
8 | PANG Weikong, LIN H F, PETERSON V K,et al.Effects of fluorine and chromium doping on the performance of lithium-rich Li1+ x MO2(M=Ni,Mn,Co) positive electrodes[J].Chemistry of Materials,2017,29(24):10299-10311. |
9 | LIAO Peng, LI Jing, DAHN J R.Lithium intercalation in LiFe2F6 and LiMgFeF6 disordered trirutile-type phases[J].Journal of the Electrochemical Society,2010,157(3):A355. |
10 | RONGEAT C, REDDY M A, WITTER R,et al.Solid electrolytes for fluoride ion batteries:Ionic conductivity in polycrystalline tysonite-type fluorides[J].ACS Applied Materials & Interfaces,2014,6(3):2103-2110. |
11 | LIESER G, DRÄGER C, SCHROEDER M,et al.Sol-gel based synthesis of LiNiFeF6 and its electrochemical characterization[J].Journal of the Electrochemical Society,2014,161(6):A1071-A1077. |
12 | 周伟东,黄秋,谢晓新,等.固态锂电池聚合物电解质研究进展[J].储能科学与技术,2022,11(6):1788-1805. |
13 | MA Tenghuan, WANG Zhixuan, WU Dengxu,et al.High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology[J].Energy & Environmental Science,2023,16(5):2142-2152. |
14 | LI Xiaona, LIANG Jianwen, LUO Jing,et al.Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J].Energy & Environmental Science,2019,12(9):2665-2671. |
15 | WANG Qingtao, MA Xuefang, LIU Qian,et al.Fluorine-doped Li3InCl6 to enhance ionic conductivity and air stability[J].Journal of Alloys and Compounds,2023,969:172479. |
16 | XIE Jin, SENDEK A D, CUBUK E D,et al.Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling[J].ACS Nano,2017,11(7):7019-7027. |
17 | YIN Yichen, YANG Jingtian, LUO Jinda,et al.A LaCl3-based lithium superionic conductor compatible with lithium metal[J].Nature,2023,616(7955):77-83. |
18 | ZHANG Shumin, ZHAO Feipeng, CHEN Jiatang,et al.A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J].Nature Communications,2023,14(1):3780. |
19 | FU Jiamin, WANG Shuo, LIANG Jianwen,et al.Superionic conducting halide frameworks enabled by interface-bonded hali-des[J].Journal of the American Chemical Society,2023,145(4):2183-2194. |
20 | BACHMAN J C,MUY S, GRIMAUD A,et al.Inorganic solid-state electrolytes for lithium batteries:Mechanisms and properties governing ion conduction[J].Chemical Reviews,2016, 116(1):140-162. |
21 | CHEN Minhua, EMLY A, ANTON V D V.Anharmonicity and phase stability of antiperovskite Li3OCl[J].Physical Review B,2015,91,214306. |
22 | EMLY A, KIOUPAKIS E, VAN DER VEN A.Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J].Chemistry of Materials,2013,25(23):4663-4670. |
23 | LI Xiaona, LIANG Jianwen, YANG Xiaofei,et al.Progress and perspectives on halide lithium conductors for all-solid-state lithi-um batteries[J].Energy & Environmental Science,2020,13(5):1429-1461. |
24 | CARL F, BIRK L, GRAUEL B,et al.LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals[J].Nano Research,2021,14(3):797-806. |
25 | TYAGI A K, KÖHLER J, BALOG P,et al.Syntheses and structures of Li3ScF6 and high pressure LiScF4 -,luminescence properties of LiScF4,a new phase in the system LiF-ScF3 [J].Journal of Solid State Chemistry,2005,178(9):2620-2625. |
26 | ASANO T, SAKAI A, OUCHI S,et al.Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J].Advanced Materials,2018,30(44):e1803075. |
27 | SCHLEM R,MUY S, PRINZ N,et al.Mechanochemical synthesis:A tool to tune cation site disorder and ionic transport properties of Li3MCl6(M=Y,Er) superionic conductors[J].Advanced Energy Materials,2020,10(6):1903719. |
28 | LIANG Jianwen, LI Xiaona, WANG Shuo,et al.Site-occupation-tuned superionic Li x ScCl3+ x halide solid electrolytes for all-solid-state batteries[J].Journal of the American Chemical Society,2020,142(15):7012-7022. |
29 | WEPPNER W, HUGGINS R A.Ionic conductivity of solid and liquid LiAlCl4 [J].Journal of the Electrochemical Society,1977,124(1):35-38. |
30 | LIU Jiahui, WANG Shuo, YU QIE,et al.Identifying lithium fluorides for promising solid-state electrolyte and coating material of high-voltage cathode[J].Materials Today Energy,2021,21:100719. |
31 | HU Jiulin, YAO Zhenguo, CHEN Keyi,et al.High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries[J].Energy Storage Materials,2020,28:37-46. |
32 | ZEVGOLIS A, WOOD B C, MEHMEDOVIĆ Z,et al.Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries[J].APL Materials,2018,6(4):047903. |
33 | TOMITA Y, YAMADA K, OHKI H,et al.Structure and dynamics of Li3InBr6 and NaInBr4 by means of nuclear magnetic resonan-ce[J].Zeitschrift Für Naturforschung A,1998,53(6/7):466-472. |
34 | ADELSTEIN N, WOOD B C.Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte[J].Chemistry of Materials,2016,28(20):7218-7231. |
35 | YAMADA K, KUMANO K, OKUDA T.Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li,115In NMR[J].Solid State Ionics,2006,177(19/20/21/22/23/24/25):1691-1695. |
36 | STEINER H J, LUTZ H D.Neue schnelle ionenleiter vom typ MMIIICl6(MI=Li,Na,Ag;MIII=In,Y)[J].Zeitschrift Für Anorganische und Allgemeine Chemie,1992,613(7):26-30. |
37 | SCHMIDT M O, WICKLEDER M S, MEYER G.Ternary halides of the A3MX6 type.Ⅷ On the crystal structure of Li3InCl6 [J].Zeit-schrift für anorganische und allgemeine Chemie,1999,625(4):539-540. |
38 | KANNO R, TAKEDA Y, YAMAMOTO O.Ionic conductivity of solid lithium ion conductors with the spinel structure:Li2MCl4 (M=Mg,Mn,Fe,Cd)[J].Materials Research Bulletin,1981, 16(8):999-1005. |
39 | VAN LOON C J J, VISSER D.Chlorides with the chrysoberyl structure:Na2CoCl4 and Na2ZnCl4 [J].Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry,1977, 33(1):188-190. |
40 | SOLINAS I, LUTZ H D.Nonceramic preparation techniques for ternary halides AB2X4 with A=Mg,Mn,Zn;B=Li,Na;X=Cl,Br[J].Journal of Solid State Chemistry,1995,117(1):34-38. |
41 | PARTIK M, LUTZ H D.Lithium vanadium chlorides-phase transition,crystal structure of the mixed valence compound Li1.3V1.2Cl4 [J].Materials Research Bulletin,1997,32(8):1073-1078. |
42 | LUTZ H D, KUSKE P, WUSSOW K.Ionic motion of tetrahedrally and octahedrally coordinated lithium ions in ternary and quaternary halides[J].Solid State Ionics,1988,28:1282-1286. |
43 | KANNO R, TAKEDA Y, TAKAHASHI A,et al.Structure,ionic conductivity,and phase transformation in new polymorphs of the double chloride spinel,Li2FeCl4 [J].Journal of Solid State Chemistry,1988,72(2):363-375. |
44 | KAJIYAMA A, TAKADA K, INADA T,et al.Electrochemical deintercalation of lithium ions from lithium iron chloride spi- nel[J].Solid State Ionics,2002,152:295-302. |
45 | TANIBATA N, TAKIMOTO S, AIZU S,et al.Applying the HSAB design principle to the 3.5 V-class all-solid-state Li-ion batteries with a chloride electrolyte[J].Journal of Materials Chemistry A,2022,10(39):20756-20760. |
46 | LUTZ H D, PFITZNER A, SCHMIDT W,et al.Mößbauer-untersuchung der modifikationen von Li2FeCl4 [J].Zeitschrift Für Na- turforschung A,1989,44(8):756-758. |
47 | WANG Kai, REN Qingyong, GU Zhenqi,et al.A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J].Nature Communications,2021,12(1):4410. |
48 | FU Jiamin, WANG Shuo, WU Duojie,et al.Halide heterogeneous structure boosting ionic diffusion and high-voltage stability of sodium superionic conductors[J].Advanced Materials,2024,36(3):2308012. |
49 | ZHOU Laidong, KWOK C Y, SHYAMSUNDER A,et al.A new halospinel superionic conductor for high-voltage all solid state li-thium batteries[J].Energy & Environmental Science,2020,13(7):2056-2063. |
50 | JUNG S K, GWON H, YOON G,et al.Pliable lithium superionic conductor for all-solid-state batteries[J].ACS Energy Letters,2021,6(5):2006-2015. |
51 | LIANG Jianwen, VAN DER MAAS E, LUO Jing,et al.A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries[J].Advanced Energy Materials,2022,12(21):2103921. |
52 | PARK K H, KAUP K, ASSOUD A,et al.High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J].ACS Energy Letters,2020,5(2):533-539. |
53 | LIU Zhantao, MA Shuan, LIU Jue,et al.High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary[J].ACS Energy Letters,2021,6(1):298-304. |
54 | WANG Kai, GU Zhenqi, XI Zhiwei,et al.Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries[J].Nature Communications,2023,14(1):1396. |
55 | SCHLEM R, BANIK A, OHNO S,et al.Insights into the lithium sub-structure of superionic conductors Li3YCl6 and Li3YBr6 [J].Chemistry of Materials,2021,33(1):327-337. |
56 | ZHOU Laidong, ASSOUD A, SHYAMSUNDER A,et al.An entropically stabilized fast-ion conductor:Li3.25[Si0.25P0.75]S4 [J].Chemistry of Materials,2019,31(19):7801-7811. |
57 | LI Xiaona, LIANG Jianwen, CHEN Ning,et al.Water-mediated synthesis of a superionic halide solid electrolyte[J].Angewandte Chemie,2019,58(46):16427-16432. |
58 | WANG Changhong, LIANG Jianwen, LUO Jing,et al.A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J].Science Advances,2021,7(37):eabh1896. |
59 | OI T.Ionic conductivity of amorphous mLiFnMF3 thin films(M=Al,Cr,Sc or Al+Sc)[J].Materials Research Bulletin,1984, 19(10):1343-1348. |
60 | Kaiyong TUO, SUN Chunwen, LIU Shuqin.Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries[J].Electrochemical Energy Reviews,2023,6(1):17. |
61 | WANG Shuhao, XU Xiaowei, CUI Can,et al.Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure[J].Advanced Functional Materials,2022,32(7):2108805. |
62 | LUO Xuming, ZHONG Yu, WANG Xiuli,et al.Degradation evolution for Li2ZrCl6 electrolytes in humid air and enhancedair stability via effective indium substitution[J].Small,2023:e2306736. |
63 | LI Xiaona, LIANG Jianwen, ADAIR K R,et al.Origin of superionic Li3Y1- x In x Cl6 halide solid electrolytes with high humidity tolerance[J].Nano Letters,2020,20(6):4384-4392. |
64 | WANG Kai, GU Zhenqi, LIU Haoxuan,et al.High-humidity-tolerant chloride solid-state electrolyte for all-solid-state lithium batteries[J].Advanced Science,2024,11(14):2305394. |
65 | BANERJEE A, WANG Xuefeng, FANG Chengcheng,et al.Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes[J].Chemical Reviews,2020,120(14):6878-6933. |
66 | WANG Shuo, BAI Qiang, NOLAN A M,et al.Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J].Angewandte Chemie,2019,58(24):8039-8043. |
67 | ZHU Yizhou, HE Xingfeng, MO Yifei.Origin of outstanding stability in the lithium solid electrolyte materials:Insights from thermodynamic analyses based on first-principles calculations[J].ACS Applied Materials & Interfaces,2015,7(42):23685-23693. |
68 | RICHARDS W D, MIARA L J, WANG Yan,et al.Interface stability in solid-state batteries[J].Chemistry of Materials,2016, 28(1):266-273. |
69 | WENZEL S, LEICHTWEISS T, KRÜGER D,et al.Interphase formation on lithium solid electrolytes:An in situ approach to study interfacial reactions by photoelectron spectroscopy[J].Solid St- ate Ionics,2015,278:98-105. |
70 | KRAFT M A, CULVER S P, CALDERON M,et al.Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X(X=Cl,Br,I)[J].Journal of the American Chemical Society,2017,139(31):10909-10918. |
71 | CONNELL J G, FUCHS T, HARTMANN H,et al.Kinetic versus thermodynamic stability of LLZO in contact with lithium metal[J].Chemistry of Materials,2020,32(23):10207-10215. |
72 | RIEGGER L M, SCHLEM R, SANN J,et al.Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J].Angewandte Chemie,2021,60(12):6718-6723. |
73 | FU Yuanyuan, MA Cheng.Interplay between Li3YX6(X=Cl or Br) solid electrolytes and the Li metal anode[J].Science China Materials,2021,64(6):1378-1385. |
74 | JI Weixiao, ZHENG Dong, ZHANG Xiaoxiao,et al.A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries[J].Journal of Materials Chemistry A,2021,9(26):15012-15018. |
75 | TAN D H S, WU E A, NGUYEN H,et al.Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J].ACS Energy Letters,2019,4(10):2418-2427. |
76 | KIM J S, JUNG S, KWAK H,et al.Synergistic halide-sulfide hybrid solid electrolytes for Ni-rich cathodes design guided by digital twin for all-solid-state Li batteries[J].Energy Storage Materials,2023,55:193-204. |
77 | YU Tianwei, LIANG Jianwen, LUO Liang,et al.Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries[J].Advanced Energy Materials,2021, 11(36):2101915. |
78 | CHEN Xin, JIA Zhiqing, LV Hanmei,et al.Improved stability against moisture and lithium metal by doping F into Li3InCl6 [J].Journal of Power Sources,2022,545:231939. |
79 | ZHAO Feipeng, SUN Qian, YU Chuang,et al.Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries[J].ACS Energy Letters,2020,5(4):1035-1043. |
80 | TANG Wen, XIA Wei, HUSSAIN F,et al.A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries[J].Journal of Power Sources,2023,568:232992. |
81 | CHEN Shuai, YU Chuang, CHEN Shaoqing,et al.Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping[J].Chinese Chemical Letters,2022,33(10):4635-4639. |
82 | WANG Changhong, LIANG Jianwen, JIANG Ming,et al.Interface-assisted in situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries[J].Nano Energy,2020,76:105015. |
83 | KIM W,NOH J, LEE S,et al.Aging property of halide solid electrolyte at the cathode interface[J].Advanced Materials,2023, 35(32):2301631. |
84 | ZHANG Shumin, ZHAO Feipeng, WANG Shuo,et al.Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte[J].Advanced Energy Materials,2021,11(32):2100836. |
85 | YU Genxi, WANG Yaping, LI Kai,et al.Solution-processable Li10GeP2S12 solid electrolyte for a composite electrode in all-solid-state lithium batteries[J].Sustainable Energy & Fuels,2021,5(4):1211-1221. |
86 | WANG Changhong, YU Ruizhi, DUAN Hui,et al.Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J].ACS Energy Letters,2021,7(1):410-416. |
[1] | SU Baocai, ZHANG Qin, XIE Yuanjian, CAI Pingxiong, PAN Yuanfeng. Advances in synthesis methods and structural modification of LiMnFePO4 materials [J]. Inorganic Chemicals Industry, 2024, 56(7): 28-36. |
[2] | WU Qingqing, XU Xuetang, WANG Fan. Study on capacitor performance of high⁃mass⁃loading ZnCo-based carbonate hydroxide electrode materials [J]. Inorganic Chemicals Industry, 2024, 56(7): 46-54. |
[3] | ZHAO Mingzhi, DUAN Hongchang, SUN Xueqin, LÜ Penggang, LI Xueli, LIU Tao, CAO Gengzhen. Study on effect of hydrothermal aging on physicochemical properties of propylene additives [J]. Inorganic Chemicals Industry, 2024, 56(7): 55-60. |
[4] | LIU Jie, SHI Xueru, WEI Shubing, CAO Xinxin. Artificial interface layer construction and sodium storage performance of P2-type layered oxide cathode [J]. Inorganic Chemicals Industry, 2024, 56(3): 39-44. |
[5] | HU Wenjuan, SHEN Xiaozhong, WANG Rujia, LU Lu, ZOU Lianli. Effect of annealing temperature on phase structure and electrochemical performance of hydrogen storage alloys for automotive batteries [J]. Inorganic Chemicals Industry, 2024, 56(11): 51-58. |
[6] | LIU Jiasheng, LUO Xiaoqiang, HOU Cuihong, XUE Lingwei. Effects of fluorine doping on electrochemical behavior of LiMn0.8Fe0.2PO4/C cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(11): 45-50. |
[7] | PENG Weifeng, SHI Wei. Effect of Co replacing Ni on electrochemical performance of La0.8Mg0.2Ni3.8-x Co x hydrogen storage alloy for automotive batteries [J]. Inorganic Chemicals Industry, 2024, 56(11): 65-71. |
[8] | ZHONG Binyang, LIANG Yulan, CHEN Zhijie, LIAO Qihua, WANG Jingui. Study on properties and microstructure of cement⁃based fillers modified by oyster shell powder [J]. Inorganic Chemicals Industry, 2024, 56(10): 135-140. |
[9] | CHEN Tiandong, ZHAO Guangzhao, HAI Chunxi, DONG Shengde, HE Xin, XU Qi, FENG Hang, YUAN Shaoxiong, MA Luxiang, ZHOU Yuan. Research and industrialization progress on coating and doping modification of lithium-rich manganese-based materials [J]. Inorganic Chemicals Industry, 2023, 55(9): 1-8. |
[10] | WANG Yansu, LIU Guozhu, YU Haibin. Research progress of platinum-based propane dehydrogenation catalysts [J]. Inorganic Chemicals Industry, 2023, 55(7): 1-9. |
[11] | HAN Hongjing, ZHANG Jingze, LAMAO Zhuoma, HAN Jizhe, WU Yongmin, TANG Weiping. Preparation of Al-Co co-doped lithium manganese oxide and its adsorption performance of lithium [J]. Inorganic Chemicals Industry, 2023, 55(7): 38-44. |
[12] | TIAN Yuling, CHENG Yang, HAN Rong, ZHOU Mei, WANG Chengjie, GE Qiangru. Effect of CaO on heavy metals stability and adsorption properties of sludge-derived biochar [J]. Inorganic Chemicals Industry, 2023, 55(6): 124-129. |
[13] | LUO Zhibo, WANG Huaiyou, WANG Min, DU Baoqiang. Effect of purity on thermo-physical properties of 60% NaNO3-40% KNO3 binary molten salt [J]. Inorganic Chemicals Industry, 2023, 55(6): 43-49. |
[14] | WANG Yansu, LIU Guozhu, YU Haibin. Research progress of non-precious metal catalysts for propane dehydrogenation [J]. Inorganic Chemicals Industry, 2023, 55(12): 1-11. |
[15] | QU Lian, LI Yuezhu, LI Mingya, WANG Zhaopei, CHEN Yanyu, LI Yineng. Study on effect of Fe2P on electrochemical performance of LiFePO4 [J]. Inorganic Chemicals Industry, 2023, 55(12): 88-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297