Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (8): 15-20.doi: 10.19964/j.issn.1006-4990.2020-0481
• Reviews and Special Topics • Previous Articles Next Articles
Liu Xingyu(),Jia Yuanyuan,Wu Shufeng,Tang Zhonghua,Zhang Peng,Liu Junqiang,Pu Xin
Received:
2020-08-25
Online:
2021-08-10
Published:
2021-08-11
CLC Number:
Liu Xingyu,Jia Yuanyuan,Wu Shufeng,Tang Zhonghua,Zhang Peng,Liu Junqiang,Pu Xin. Research progress of Ce-based SCR denitration catalysts[J]. Inorganic Chemicals Industry, 2021, 53(8): 15-20.
[1] | 宋丽云, 何洪, 李坚, 等. 铈基NH3-SCR催化剂研究进展[J]. 中国稀土学报, 2017, 35(1):69-82. |
[2] | 刘兴誉, 张鹏, 贾媛媛, 等. 基于TiO2载体的锰铈系低温SCR脱硝催化剂研究进展[J]. 化工环保, 2020, 40(1):26-31. |
[3] | 翁端, 冉锐, 曹译丹, 等. 铈基稀土催化材料在大气污染治理中的研究进展[J]. 中国材料进展, 2018, 37(10):756-764. |
[4] | 艾双双, 闫东杰, 黄学敏, 等. 锰铈系低温SCR脱硝催化剂的研究进展[J]. 应用化工, 2018, 47(11):2520-2524,2530. |
[5] | 张哲, 谢峻林, 方德, 等. CeO2在SCR低温脱硝催化剂中应用的研究进展[J]. 硅酸盐通报, 2014, 33(11):2891-2896. |
[6] | Yang S J, Guo Y F, Chang H Z, et al. Novel effect of SO2 on the SCR reaction over CeO2:Mechanism and significance[J]. Applied Cataly-sis B:Environmental, 2013, 5(136/137):19-28. |
[7] | 王涛, 徐凯杰, 郭晶晶, 等. 天然锰矿负载CeO2低温NH3-SCR脱硝性能[J]. 合肥工业大学学报:自然科学版, 2018, 41(6):845-851. |
[8] |
Qi G, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental, 2014, 51(2):93-106.
doi: 10.1016/j.apcatb.2004.01.023 |
[9] | 刘海岩. 铈基脱硝催化剂的研究[D]. 北京: 北京化工大学, 2017. |
[10] | Pan W G, Zhou Y, Guo R T, et al. Influence of calcination temper-ature on CeO2-CuO catalyst for the selective catalytic reduction of NO with NH3[J]. Environmental Progress & Sustainable Energy, 2014, 33(2):385-389. |
[11] |
Lee S M, Lee H H, Hong S C. Influence of calcination temperature on Ce/TiO2 catalysis of selective catalytic oxidation of NH3 to N2[J]. Applied Catalysis A:General, 2014, 470:189-198.
doi: 10.1016/j.apcata.2013.10.057 |
[12] |
Xu W Q, Yu Y B, Zhang C B, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catalysis Communications, 2008, 9:1453-1457.
doi: 10.1016/j.catcom.2007.12.012 |
[13] | 杨波, 何汉兵. CeO2/TiO2纳米管催化剂脱硝性能研究[J]. 化工环保, 2019, 39(1):40-44. |
[14] |
Shu Y, Sun H, Quan X, et al. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia[J]. The Journal of Physical Chemistry C, 2012, 116(48):25319-25327.
doi: 10.1021/jp307038q |
[15] |
Sun P, Guo R T, Liu S M, et al. Enhancement of the low-tempera-ture activity of Ce/TiO2 catalyst by Sm modification for selective catalytic reduction of NOx with NH3[J]. Molecular Catalysis, 2017, 433:224-234.
doi: 10.1016/j.mcat.2016.12.025 |
[16] |
Guo R T, Li M Y, Sun P, et al. Mechanistic investigation of the pro-motion effect of Bi modification on the NH3-SCR performance of Ce/TiO2 catalyst[J]. The Journal of Physical Chemistry C, 2017, 121(49):27535-27545.
doi: 10.1021/acs.jpcc.7b10342 |
[17] |
Li L L, Tan W, Wei X Q, et al. Mo doping as an effective strategy to boost low temperature NH3-SCR performance of CeO2/TiO2 cat-alysts[J]. Catalysis Communications, 2018, 114:10-14.
doi: 10.1016/j.catcom.2018.05.015 |
[18] | 张光学, 周安琪, 范海燕, 等. 铁铈氧化物SCR脱硝催化剂的制备及性能[J]. 燃料化学学报, 2015, 43(10):1267-1272. |
[19] |
Shen B X, Liu T, Zhao N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2010, 22(9):1447-1454.
doi: 10.1016/S1001-0742(09)60274-6 |
[20] |
Li M Y, Guo R T, Hu C X, et al. The enhanced resistance to K deac-tivation of Ce/TiO2 catalyst for NH3-SCR reaction by the modifica-tion with P[J]. Applied Surface Science, 2018, 436(APRa1):814-822.
doi: 10.1016/j.apsusc.2017.12.087 |
[21] |
Zhang R, Zhong Q, Zhao W. Enhanced catalytic performance of F-doped CeO2-TiO2 catalysts in selective catalytic reduction of NO with NH3 at low temperatures[J]. Research on Chemical Intermediates, 2015, 41(6):3479-3490.
doi: 10.1007/s11164-013-1465-9 |
[22] |
Wang S X, Guo R T, Pan W G, et al. The deactivation mechanism of Pb on the Ce/TiO2 catalyst for the selective catalytic reduction of NOx with NH3:TPD and DRIFT studies[J]. Physical Chemistry Chemical Physics, 2017, 19:5333-5342.
doi: 10.1039/C6CP07271B |
[23] | Guo R T, Lu C Z, Pan W G, et al. A comparative study of the poiso-ning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Catalysis Commu-nications, 2015, 59:136-139. |
[24] | Liu S M, Guo R T, Wang S X, et al. Deactivation mechanism of Ca on Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,(78):290-298. |
[25] |
Xu W Q, He H, Yu Y B. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. The Journal of Physical Chemistry C, 2009, 113(11):4426-4432.
doi: 10.1021/jp8088148 |
[26] | Xiao X, Xiong S C, Shi Y J, et al. Effect of H2O and SO2 on the se-lective catalytic reduction of NO with NH3 over Ce/TiO2 catalyst:Mechanism and kinetic study[J]. The Journal of Physical Chemis-try C, 2016, 120(2):1066-1076. |
[27] |
Zhang W J, Liu G F, Jiang J, et al. Sulfation effect of Ce/TiO2 cata-lyst for the selective catalytic reduction of NOx with NH3:Mecha-nism and kinetic studies[J]. RSC Advances, 2019, 9(55):32110-32120.
doi: 10.1039/C9RA06985B |
[28] | 杜蒙蒙, 温正城, 康普滋, 等. ZSM-5负载Ce-Co催化氧化NO的机理研究[J]. 热能动力工程, 2018, 33(3):93-99. |
[29] | 王殿二, 王玲, 高国龙, 等. Ce-Fe/ZSM-5催化剂用于燃机烟气SCR脱硝的性能[J]. 过程工程学报, 2020, 20(6):718-727. |
[30] | 王梦秋. MN-Ce/ZSM-5分子筛型SCR催化剂的脱硝性能研究[D]. 南京: 南京大学, 2015. |
[31] | 任爱玲, 刘卉, 张硕, 等. Ce-Mn/ZSM-5催化剂的制备及其低温脱硝性能分析[J]. 现代化工, 2018, 38(6):73-77. |
[32] | Carja G, Delahay G, Signorile C, et al. Fe-Ce-ZSM-5 a new cata-lyst of outstanding properties in the selective catalytic reduction of NO with NH3[J]. Chemical Communications, 2004, 12:1404-1405. |
[33] |
Carja G, Kameshima Y, Okada K, et al. Mn-Ce/ZSM-5 as a new superior catalyst for NO reduction with NH3[J]. Applied Catalysis B:Environmental, 2007, 73:60-64.
doi: 10.1016/j.apcatb.2006.06.003 |
[34] | 梁斌, Calis H P. Ce/β-分子筛催化剂上NH3选择还原NO反应动力学研究[J]. 高校化学工程学报, 1999, 13(3):217-222. |
[35] |
Li J, Jia L W, Jin W Y, et al. Effects of Ce-doping on the structure and NH3-SCR activity of Fe/beta catalyst[J]. Rare Metal Materials and Engineering, 2015, 44(7):1612-1616.
doi: 10.1016/S1875-5372(15)30102-8 |
[1] | ZHU Jicheng, YANG Qixin, LIANG Haoquan, WANG Zengkun, OUYANG Fugui, DI Jing, GAI Xikun. Effect of confined catalyst Ni@S2 on performance of methane dry reforming reaction [J]. Inorganic Chemicals Industry, 2025, 57(2): 138-146. |
[2] | SUN Yanlong, YUAN Guangsheng, WANG Hongjun. Study on palladium modified mesoporous TiO2 nanorods for efficient photodegradation of tetracycline [J]. Inorganic Chemicals Industry, 2024, 56(9): 147-153. |
[3] | LIU Qingcui, LI Yunqing, PANG Ruiqi, TIAN Yaping, CHEN Yiying, LI Fang, LI Qiming. Preparation of Zn/Co-ZIF derived porous carbon supported Pd as catalyst and its application to formic acid dehydrogenation [J]. Inorganic Chemicals Industry, 2024, 56(6): 147-152. |
[4] | LI Jiangpeng, ZHANG Huibin. Synergistic degradation of methylene blue by photo-Fenton and photocatalytic with 3D porous LaFeO3/CeO2/SrTiO3 [J]. Inorganic Chemicals Industry, 2024, 56(5): 141-148. |
[5] | WANG Chao, SONG Guoliang, XIAO Han. Industrial application of THFS-2 sulfurized reforming prehydrogenation catalysts [J]. Inorganic Chemicals Industry, 2024, 56(5): 94-100. |
[6] | JIN Suna, LÜ Ruiliang. Research progress of heterogeneous catalytic ozonation for industrial wastewater treatment [J]. Inorganic Chemicals Industry, 2024, 56(3): 28-38. |
[7] | CHEN Xingliang, FAN Wenjuan, CHANG Hui, HUANG Haiping, JIANG Zhiqiang. Study on collaborative strategy between Fe3+ and Ni-based metal-organic frameworks for boosting electrocatalytic oxygen evolution [J]. Inorganic Chemicals Industry, 2024, 56(2): 152-158. |
[8] | HOU Zhanggui, WU Chongchong, ZHANG Siran. Research progress of CO2 conversion via Reverse Water-Gas Shift reaction [J]. Inorganic Chemicals Industry, 2024, 56(11): 105-115. |
[9] | FENG Qing, WANG Yansu, ZHOU Wei, LIU Yang, SUN Yanmin, NAN Jun. Research progress on catalysts for relay-catalysis of CO2 to prepare high value-added chemicals [J]. Inorganic Chemicals Industry, 2024, 56(11): 81-94. |
[10] | MA Yihong, CHEN Xingtao, TANG Lei. Treatment of printing wastewater by chemical coagulation-TiO2/g-C3N5 photocatalytic degradation [J]. Inorganic Chemicals Industry, 2024, 56(10): 151-158. |
[11] | CHEN Xu, YANG Gang, LI Haitao. Study on preparation of multistage pore nano-SAPO-34 molecular sieves and its methanol to olefin performance [J]. Inorganic Chemicals Industry, 2024, 56(1): 134-140. |
[12] | JIN Shengshi, LIU Kaijie, LIU Qiuwen, ZHANG Yibo, YANG Xiangguang. Study on catalytic performance of phosphoric acid modified CeO2 nanorod supported Pt catalyst for propane combustion [J]. Inorganic Chemicals Industry, 2024, 56(1): 141-148. |
[13] | YAN Zhen, QIU Zhaofu, JIN Xibiao, WANG Yuan, LIU Chang, YANG Ji. Study on 4A molecular sieve loaded with Ce and γ-Fe2O3 for removal of Sb(Ⅲ) and Sb(Ⅴ) in water [J]. Inorganic Chemicals Industry, 2024, 56(1): 81-89. |
[14] | ZHAN Hongren, TIAN Feng, ZHANG Xianzhen, MA Yugui, KOU Liping, LIU Peng. Experimental study on preparation of high performance foam glass ceramics from waste rock wool [J]. Inorganic Chemicals Industry, 2024, 56(1): 96-101. |
[15] | GUO Zini, QU Jiyan, LUO Jianhong. Oxidation of NO x by low-temperature plasma using catalysts with different band gaps [J]. Inorganic Chemicals Industry, 2023, 55(9): 126-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297