Inorganic Chemicals Industry ›› 2020, Vol. 52 ›› Issue (4): 18-22.doi: 10.11962/1006-4990.2019-0240
• Reviews and Special Topics • Previous Articles Next Articles
Wang Jiatai,Zhao Duan,Ma Lianhua,Zhang Caihong()
Received:
2019-10-17
Online:
2020-04-10
Published:
2020-04-22
Contact:
Zhang Caihong
E-mail:manvict@foxmail.com
CLC Number:
Wang Jiatai,Zhao Duan,Ma Lianhua,Zhang Caihong. Research progress of LiFePO4 cathode materials for Li-ion battery[J]. Inorganic Chemicals Industry, 2020, 52(4): 18-22.
[1] |
Padhi A K, Nanjundaswamy K S, Goodenough J B . Phospho-o-livi-nes as positive-electrode materials for rechargeable lithium batteri-es[J]. Journal of the Electrochemical Society, 1997,144(4):1188-1194.
doi: 10.1149/1.1837571 |
[2] |
Yoshino A . The birth of the lithium-ion battery[J]. Angewandte Che-mie International Edition, 2012,51(24):5798-5800.
doi: 10.1002/anie.201105006 pmid: 22374647 |
[3] |
Chung S Y, Bloking J T, Chiang Y M . Electronically conductive pho-spho-olivines as lithium storage electrodes[J]. Nature Materials, 2002,1(2):123-128.
doi: 10.1038/nmat732 pmid: 12618828 |
[4] |
Gao L, Xu Z, Zhang S . The co-doping effects of Zr and Co on struc-ture and electrochemical properties of LiFePO4 cathode materials[J]. Journal of Alloys and Compounds, 2018,739:529-535.
doi: 10.1016/j.jallcom.2017.12.313 |
[5] |
Wang Z H, Yuan L X, Ma J , et al. Electrochemical performance in Na-incorporated nonstoichiometric LiFePO4/C composites with cont-rollable impurity phases[J]. Electrochimica Acta, 2012,62:416-423.
doi: 10.1016/j.electacta.2011.12.055 |
[6] |
Islam M S, Driscoll D J, Fisher C A J , et al. Atomic-scale investiga-tion of defects,dopants,and lithium transport in the LiFePO4 olivi-ne-type battery material[J]. Chemistry of Materials, 2005,17(20):5085-5092.
doi: 10.1021/cm050999v |
[7] |
Qiao Y Q, Feng W L, Li J , et al. Ultralong cycling stability of carbon-nanotube/LiFePO4 nanocomposites as electrode materials for lithium-ion batteries[J]. Electrochimica Acta, 2017,232:323-331.
doi: 10.1016/j.electacta.2017.02.161 |
[8] |
Tu X, Zhou Y, Song Y . Freeze-drying synjournal of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries[J]. Applied Surface Science, 2017,400:329-338.
doi: 10.1016/j.apsusc.2016.12.220 |
[9] | Susantyoko R A, Alkindi T S, Kanagaraj A B , et al. Performance op-timization of freestanding MWCNT-LiFePO4 sheets as cathodes for improved specific capacity of lithium-ion batteries[J]. RSC Advan-ces, 2018,8(30):16566-16573. |
[10] |
Zhang Y, Xin P, Yao Q . Electrochemical performance of LiFePO4/C synthesized by sol-gel method as cathode for aqueous lithium ion batteries[J]. Journal of Alloys and Compounds, 2018,741:404-408.
doi: 10.1016/j.jallcom.2018.01.083 |
[11] |
Wu G, Liu N, Gao X , et al. A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life[J]. Applied Surface Science, 2018,435:1329-1336.
doi: 10.1016/j.apsusc.2017.11.276 |
[12] | Golestani E, Javanbakht M, Ghafarian-Zahmatkesh H , et al. Tarta-ric acid assisted carbonization of LiFePO4 synthesized through in situ hydrothermal process in aqueous glycerol solution[J]. Elec-trochimica Acta, 2018,259:903-915. |
[13] | Lv C, Duan X, Deng J , et al. LiFePO4 mesocrystals coated with N-doped carbon from an ionic liquid for Li-ion batteries[J]. Cryst EngComm, 2017,19(9):1253-1257. |
[14] |
Wang X, Dong S, Wang H . Design and fabrication of N-doped gra-phene decorated LiFePO4@C composite as a potential cathode for electrochemical energy storage[J]. Ceramics International, 2018,44(1):464-470.
doi: 10.1016/j.ceramint.2017.09.199 |
[15] |
Xiong Q Q, Lou J J, Teng X J , et al. Controllable synjournal of N-C@LiFePO4 nanospheres as advanced cathode of lithium ion bat-teries[J]. Journal of Alloys and Compounds, 2018,743:377-382.
doi: 10.1039/c3nr06452b pmid: 24500178 |
[16] |
Dhaybi S, Marsan B, Hammami A . A novel low-cost and simple co-lloidal route for preparing high-performance carbon-coated LiFePO4 for lithium batteries[J]. Journal of Energy Storage, 2018,18:259-265.
doi: 10.1016/j.est.2018.05.009 |
[17] |
Guan Y, Shen J, Wei X , et al. LiFePO4/activated carbon/grapheme composite with capacitive-battery characteristics for superior high-rate lithium-ion storage[J]. Electrochimica Acta, 2019,294:148-155.
doi: 10.1016/j.electacta.2018.10.101 |
[18] |
Guan Y, Shen J, Wei X , et al. High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode material for Li-ion batteries[J]. Applied Surface Science, 2019,481:1459-1465.
doi: 10.1016/j.apsusc.2019.03.213 |
[19] |
Wang Q, Peng D, Chen Y , et al. A facile surfactant-assisted self-assembly of LiFePO4/graphene composites with improved rate per-formance for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2018,818:68-75.
doi: 10.1016/j.jelechem.2018.04.030 |
[20] |
Wang X, Dong S, Wang H . Design and fabrication of N-doped gra-phene decorated LiFePO4@C composite as a potential cathode for electrochemical energy storage[J]. Ceramics International, 2018,44(1):464-470.
doi: 10.1016/j.ceramint.2017.09.199 |
[21] |
Oh J, Lee J, Hwang T , et al. Dual layer coating strategy utilizing N-doped carbon and reduced graphene oxide for high-performance LiFePO4 cathode material[J]. Electrochimica Acta, 2017,231:85-93.
doi: 10.1016/j.electacta.2017.01.185 |
[22] | 毛佳宇, 肖杨 . 正极材料LiFePO4/C掺杂改性的研究进展[J]. 无机盐工业, 2016,48(1):13-16,34. |
[23] | 谷和云, 李昇, 李二锐 , 等. 镁离子掺杂磷酸铁锂的制备及其电化学性能[J]. 无机盐工业, 2016,48(1):64-67. |
[24] | Saroha R, Panwar A K, Sharma Y , et al. Development of surface functionalized ZnO-doped LiFePO4/C composites as alternative cathode material for lithium ion batteries[J]. Applied Surface Sci-ence, 2017,394:25-36. |
[25] |
Gao C, Zhou J, Liu G , et al. Synjournal of F-doped LiFePO4/C catho-de materials for high performance lithium-ion batteries using co-precipitation method with hydrofluoric acid source[J]. Journal of Alloys and Compounds, 2017,727:501-513.
doi: 10.1016/j.jallcom.2017.08.149 |
[26] | Shi J Y, Zhang X Q, Zhang X K , et al. Titania and nitrogen-doped carbon co-modification:Their synergic effects on the electrochemi-chemical performance of LiFePO4[J]. Journal of Alloys and Compo-unds, 2018,750:139-146. |
[27] |
Madram A R, Faraji M . Site-dependent electrochemical performa-nce of Na and K co-doped LiFePO4/C cathode material for lithium-ion batteries[J]. New Journal of Chemistry, 2017,41(20):12190-12197.
doi: 10.1039/C7NJ01872J |
[28] |
Zhu J M, Xia T, Yan K K , et al. A novel Cu +-doped Li[Fe0.9Cu0.1Li0.1]PO4/C cathode material with enhanced electro-chemical properties [J]. RSC Advances, 2017,7(28):16984-16990.
doi: 10.1039/C6RA28827H |
[29] | Ren Yu, Bruce P G . Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries[J]. Electrochemistry Communi-cations, 2012,17:60-62. |
[30] |
Li Z, Peng Z, Zhang H , et al. [100]-Oriented LiFePO4 nanoflakes toward high rate Li-ion battery cathode[J]. Nano Letters, 2016,16(1):795-799.
doi: 10.1021/acs.nanolett.5b04855 pmid: 26694590 |
[31] |
Sun C, Rajasekhara S, Goodenough J B , et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. Journal of the American Chemical Society, 2011,133(7):2132-2135.
doi: 10.1021/ja1110464 pmid: 21268579 |
[32] |
Ma Z, Fan Y, Shao G , et al. In situ catalytic synjournal of high-grap-hitized carbon-coated LiFePO4 nanoplates for superior Li-ion bat-tery cathodes[J]. ACS Applied Materials & Interfaces, 2015,7(4):2937-2943.
doi: 10.1021/am5084368 pmid: 25584530 |
[1] | LIU Dexin, MA Tengyue, AN Jinling, LIU Jinrong, HE Weiyan. Study on cathode material design and electrochemical properties of manganese-based sodium ion battery [J]. Inorganic Chemicals Industry, 2024, 56(3): 51-55. |
[2] | ZHOU Huang, HU Xiaoping, REN Wen, CAO Xinxin. Preparation and sodium storage properties of sulfur-doped Na3(VOPO4)2F cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(2): 30-37. |
[3] | YU Hui, WANG Yubin, LIAO Zhejun, YANG Yunguang. Overview of recycling and utilization process of waste ternary lithium-ion power batteries [J]. Inorganic Chemicals Industry, 2023, 55(7): 32-37. |
[4] | WANG Zihan, LI Jun, CHEN Ming, ZHOU Qingyu. Study on preparation of battery grade ferric phosphate by co-precipitation of ferric nitrate and phosphoric acid [J]. Inorganic Chemicals Industry, 2023, 55(7): 51-57. |
[5] | PAN Xiaoxiao, ZHUANG Shuxin, SUN Yuqing, SUN Gaoxing, REN Yan, JIANG Shengyu. Research progress of modified-LiFePO4 as cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(6): 18-26. |
[6] | LU Junhao. Study on full element recycling process of retired ternary power lithium battery [J]. Inorganic Chemicals Industry, 2023, 55(6): 92-103. |
[7] | ZHU Zhihong, ZHU Yongfang. Study on preparation and properties of silicon doped lithium manganate by self-propagating combustion [J]. Inorganic Chemicals Industry, 2023, 55(5): 66-70. |
[8] | CHEN Yujue, ZHANG Liangjun, KUANG Huan, JIANG Manwen, XIAO Li. Study on roasting and recovery process of waste lithium iron phosphate powder with sodium bisulfate [J]. Inorganic Chemicals Industry, 2023, 55(3): 113-117. |
[9] | TIAN Peng, XU Jingang, XU Qianjin, LIU Kunji, PANG Hongchang, NING Guiling. Preparation of nano-alumina slurry and its application in modifying lithium-ion battery cathode material [J]. Inorganic Chemicals Industry, 2023, 55(12): 43-49. |
[10] | PENG Chenxi, LIU Jun. Research progress of layered transition metal oxides cathode materials for sodium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(10): 1-12. |
[11] | TANG Di,WANG Junxiong,CHEN Wen,JI Guanjun,MA Jun,ZHOU Guangmin. Research status and prospect on direct regeneration of cathode materials from retired lithium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(1): 15-25. |
[12] | XU Qianjin,XU Jingang,TIAN Peng,LIU Kunji,GAO Tingting,NING Guiling. Research progress of alumina coated cathode materials for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(1): 46-55. |
[13] | LIU Jinhang,YANG Zhipeng,CHEN Xiudong,LUO Yuxuan,YU Langhua,WANG Yawei,ZHAN Changchao,CAO Xiaohua. Preparation of new porous carbon and its lithium storage performance [J]. Inorganic Chemicals Industry, 2022, 54(9): 85-89. |
[14] | KUANG Xinliang,LIU Chuixiang,XIONG Peng. Industry analysis and market prospect of lithium ion battery [J]. Inorganic Chemicals Industry, 2022, 54(8): 12-19. |
[15] | ZHOU Lei,YUAN Yongshun,LI Lu,LIU Bingguang,LI Jiansheng. Research progress on preparation and application of lithium ion sieve from spent lithium ion batteries [J]. Inorganic Chemicals Industry, 2022, 54(8): 33-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297