Inorganic Chemicals Industry ›› 2024, Vol. 56 ›› Issue (9): 154-163.doi: 10.19964/j.issn.1006-4990.2023-0627
• Catalytic Materials • Previous Articles Next Articles
SHI Mengke(), FAN Zhaoya, YUE Feng, ZHANG Shuo, MENG Yang, ZHANG Hongzhong(
)
Received:
2023-12-30
Online:
2024-09-10
Published:
2024-02-18
Contact:
ZHANG Hongzhong
E-mail:1102730264@qq.com;zhz@zzuli.edu.cn
CLC Number:
SHI Mengke, FAN Zhaoya, YUE Feng, ZHANG Shuo, MENG Yang, ZHANG Hongzhong. Study on electro-assisted photocatalytic high selective conversion of CO2 in air[J]. Inorganic Chemicals Industry, 2024, 56(9): 154-163.
1 | MURINGA KANDY M, RAJEEV K A, SANKARALINGAM M.Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide[J].Sustainable Ener- gy & Fuels,2021,5(1):12-33. |
2 | GONG E,ALI S, HIRAGOND C B,et al.Solar fuels:Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels[J].Energy & Environmental Science,2022,15(3):880-937. |
3 | 郭天宇,张佳宁,白德豪 等.氮掺杂生物质炭耦合氧化铜材料用于电催化还原CO2 [J/OL].太原理工大学学报,2024:1-10[2024-02-07].http://kns.cnki.net/kcms/detail/14.1220.N.20240202.1714.003.html. |
GUO Tianyu, ZHANG Jianing, BAI Dehaoet al.Nitrogen-doped biomass carbon coupled with copper oxide materials for electrocatalytic reduction of CO2 [J/OL].Journal of Taiyuan University of Technology:2024:1-10[2024-02-07].http://kns.cnki.net/kcms/detail/14.1220.N.20240202.1714.003.html. | |
4 | 赵炎,郝雪薇,时海南,等.铜掺杂TiO2/PCN异质结光催化还原二氧化碳性能研究[J].无机盐工业,2023,55(8):21-27. |
ZHAO Yan, HAO Xuewei, SHI Hainan,et al.Study on photocatalytic CO2 reduction performance of Cu-doped TiO2/PCN heterojunction[J].Inorganic Chemicals Industry,2023,55(8):21-27. | |
5 | BAI Yujie, ZHAO Jie, FENG Shuaijun,et al.Light-driven thermocatalytic CO2 reduction over surface-passivated β-Mo2C nanowires:Enhanced catalytic stability by light[J].Chemical Communications,2019,55(32):4651-4654. |
6 | HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K.Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J].Angewandte Chemie International Edition,2013,52(29):7372-7408. |
7 | INDRAKANTI V P, KUBICKI J D, SCHOBERT H H.Photoinduced activation of CO2 on Ti-based heterogeneous catalysts:Current state,chemical physics-based insights and outlook[J].Ener- gy & Environmental Science,2009,2(7):745-758. |
8 | ETTEDGUI J, DISKIN-POSNER Y, WEINER L,et al.Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline-polyoxometalate hybrid complex[J].Journal of the American Chemical Society,2011,133(2):188-190. |
9 | 赵馨,邹伟欣,董林.高分散铈物种催化剂的可控制备及其光催化还原CO2为CH4的促进机制[J/OL].环境化学,2024,43:1-9.[2024-02-07]http://kns.cnki.net/kcms/detail/11.1844.X.20240202.1512.050.html. |
ZHAO Xin, ZOU Weixin, DONG Lin.Highly dispersed Ce species on g-C3N4 for the enhanced selectivity of photocatalytic CO2 reduction to CH4[J/OL].Environmental Chemistry,2024,43:1-9.[2024-02-07]http://kns.cnki.net/kcms/detail/11.1844.X.20240202.1512.050.html. | |
10 | 宋桂贤,吴雄岗.不同形貌的CdS/BiOBr复合物对环己醇中光催化还原CO2活性的影响[J].工业催化,2023,31(11):61-66. |
SONG Guixian, WU Xionggang.Performance of CdS/BiOBr composites with different morphology in photocatalytic reduction of CO2 in cyclohexanol[J].Industrial Catalysis,2023,31(11):61- 66. | |
11 | 郑国宏,张春雷,陈旻澍,等.CoP/g-C3N4复合材料的制备及其光催化还原CO2性能[J].化工环保,2023,43(6):821-828. |
ZHENG Guohong, ZHANG Chunlei, CHEN Minshu,et al.Preparation of CoP/g-C3N4 composite and its activity for photocatalytic reduction of CO2 [J].Environmental Protection of Chemical Industry,2023,43(6):821-828. | |
12 | 方伟,孙志敏,赵雷,等.三维g-C3N4泡沫负载Cu(OH)2纳米片的制备及其光催化还原CO2性能[J].材料工程,2023,51(4):141-150. |
FANG Wei, SUN Zhimin, ZHAO Lei,et al.Preparation of 3D g-C3N4 foam supported Cu(OH)2 nanosheets for photocatalytic CO2 reduction[J].Journal of Materials Engineering,2023,51(4):141-150. | |
13 | PARK J H, KIM S, BARD A J.Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting[J].Nano Letters,2006,6(1):24-28. |
14 | 黎文辉,黄建光,陈彩霞.贵金属负载型TiO2光催化法处理含酚工业废水研究[J].化学工程师,2024,38(2):34-37. |
LI Wenhui, HUANG Jianguang, CHEN Caixia.Treatment of phenol containing industrial wastewater by noble metal supported TiO2 photocatalysis[J].Chemical Engineer,2024,38(2):34-37. | |
15 | 石支尧,李扬,徐静文,等.铜铈共掺杂TiO2用于天然气中汞的光催化脱除研究[J].现代化工,2023,43(4):81-86,92. |
SHI Zhiyao, LI Yang, XU Jingwen,et al.Copper-cerium Co-do-ped TiO2 for photocatalytic removal of mercury from natural gas[J].Modern Chemical Industry,2023,43(4):81-86,92. | |
16 | AMORÓS-PÉREZ A, CANO-CASANOVA L,LILLO-RÓDENAS |
M Á,et al.Cu/TiO2 photocatalysts for the conversion of acetic acid into biogas and hydrogen[J].Catalysis Today,2017,287:78-84. | |
17 | 柳准,徐启杰,张莉莉,等.TiO2/Cu复合材料的光催化降解和抗菌性能研究及机理分析[J].化工新型材料,2023,51(9):209-212,219. |
LIU Zhun, XU Qijie, ZHANG Lili,et al.Studies on the photocatalytic degradation and antimicrobial properties of TiO2/Cu composite as well as the mechanism[J].New Chemical Materials,2023,51(9):209-212,219. | |
18 | CHEN Boren, NGUYEN V H, WU J C S,et al.Production of renewable fuels by the photohydrogenation of CO2:Effect of the Cu species loaded onto TiO2 photocatalysts[J].Physical Chemistry Chemical Physics:PCCP,2016,18(6):4942-4951. |
19 | 夏建强,丁立勤,张海明,等.Cu-TiO2催化剂模拟太阳光光催化降解环丙沙星[J].广东化工,2023,50(13):139-141, 144. |
XIA Jianqiang, DING Liqin, ZHANG Haiming,et al.Photocatalytic degradation of ciprofloxacin by simulating sunlight with Cu-doped TiO2 catalysts[J].Guangdong Chemical Industry,2023,50(13):139-141,144. | |
20 | 蒋毅.聚多巴胺功能修饰及原位化学还原法制备纳米Ag复合材料[D].北京:北京化工大学,2012. |
JIANG Yi.Preparation of nano Ag composites by poly(dopamine) functionalization and in situ chemical reduction[D].Beijing:Beijing University of Chemical Technology,2012. | |
21 | FRONCISZ W, SARNA T, HYDE J S.Cu2+ probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy.I.Synthetic melanins[J].Archives of Biochemistry and Biophysics,1980,202(1):289-303. |
22 | AN Peng, ZUO Fang, LI Xinhua,et al.A bio-inspired polydopamine approach to preparation of gold-coated Fe3O4 core-shell nanoparticles:Synthesis,characterization and mechanism[J].Nano,2013,8(6):1350061. |
23 | CONG Ying, XIA Tian, ZOU Miao,et al.Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities[J].Journal of Materials Chemistry B,2014,2(22):3450-3461. |
24 | HU A, LIANG R, ZHANG X,et al.Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structur-es[J].Journal of Photochemistry and Photobiology A:Chemistry,2013,256:7-15. |
25 | WANG Lan, ZHOU Hanghang, ZHANG Hongzhong,et al.SiO2@TiO2 Core@Shell nanoparticles deposited on 2D-layered ZnIn2S4 to form a ternary heterostructure for simultaneous photocatalytic hydrogen production and organic pollutant degradati- on[J].Inorganic Chemistry,2020,59(4):2278-2287. |
26 | PAULINO P N, SALIM V M M, RESENDE N S.Zn-Cu promoted TiO2 photocatalyst for CO2 reduction with H2O under UV light[J].Applied Catalysis B:Environmental,2016,185:362-370. |
27 | CHEN Changzhou, LIU Peng, XIA Haihong,et al.Photocatalytic cleavage of β-O-4 ether bonds in lignin over Ni/TiO2 [J].Molecules,2020,25(9):2109. |
28 | REN Haitao, HAN Jing, LI Tingting,et al.Visible light-induced oxidation of aqueous arsenite using facile Ag2O/TiO2 composites:Performance and mechanism[J].Journal of Photochemistry and Photobiology A:Chemistry,2019,377:260-267. |
29 | SALEH R, TAUFIK A, PRAKOSO S P.Fabrication of Ag2O/TiO2 composites on nanographene platelets for the removal of organic pollutants:Influence of oxidants and inorganic anions[J].Applied Surface Science,2019,480:697-708. |
30 | ZHAO Jie, LI Yingxuan, ZHU Yunqing,et al.Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation:Role of metallic Cu[J].Applied Catalysis A:General,2016,510:34-41. |
31 | ZHANG Minghui, WANG Xiao, QI Xiwei,et al.Effect of Ag cocatalyst on highly selective photocatalytic CO2 reduction to HCOOH over CuO/Ag/UiO-66 Z-scheme heterojunction[J].Jo- urnal of Catalysis,2022,413:31-47. |
32 | LIU Fuli, SONG Lizhu, OUYANG Shuxin,et al.Cu-Based mixed metal oxides for an efficient photothermal catalysis of the water-gas shift reaction[J].Catalysis Science & Technology,2019,9(9):2125-2131. |
33 | CHEN Lin, LI Hongyi, LI Hongmei,et al.Accelerating photogenerated charge kinetics via the g-C3N4 Schottky junction for enhanced visible-light-driven CO2 reduction[J].Applied Catalysis B:Environmental,2022,318:121863. |
[1] | XU Jing, WANG Dahui, CHEN Huaijing, GUO Yongqi, ZHENG Yang. Research progress on regeneration utilization of LiFePO4 materials in retired power batteries of electric vehicles [J]. Inorganic Chemicals Industry, 2024, 56(8): 1-8. |
[2] | LIU Hui, WANG Hongliang, YU Kun, GAO Shengnan. Effect of calcination on porous structure and electrochemical properties of air electrode [J]. Inorganic Chemicals Industry, 2024, 56(6): 80-86. |
[3] | WANG Zhiqiang, LIU Xiangcheng, ZHANG Junjie, JIN Wufeng. Study on kinetic model of low concentration formaldehyde catalyzed by copper-manganese oxide [J]. Inorganic Chemicals Industry, 2023, 55(6): 142-150. |
[4] | XUE Haiyue,WANG Lianyong,LIU Xiangyu,HAN Jianli,YANG Yifan. Analysis and prospect of using fly ash based zeolite for infrared suppression of tail flame of aircraft [J]. Inorganic Chemicals Industry, 2022, 54(3): 23-30. |
[5] | SHEN Jiaqi,YAN Shenghu,ZHANG Yue,LIU Jianwu,SHEN Jiefa. Study on intensification of gas-liquid reaction process for sodium chloride waste salt to ammonium alkali [J]. Inorganic Chemicals Industry, 2022, 54(12): 99-105. |
[6] | Wang Xiangjun,Gao Li,Xu Lei,Chi Yongqing. Study on CoFe2O4@C as cathode catalyst of Li-air battery [J]. Inorganic Chemicals Industry, 2021, 53(5): 96-99. |
[7] | Zhang Wenxian,Liu Liansheng,Cao Hejun,Wu Binke,Cheng Zhenpeng. Effect on kinetics of limestone decomposition under different CO2 atmospheres [J]. Inorganic Chemicals Industry, 2020, 52(3): 59-63. |
[8] | Hang Meiyan,Peng Yajuan,Lu Lan,Zhang Haiyan,Tao Xu. Modification study and mechanism analysis on interface structure between ferrochromium slag aggregate and cement paste [J]. Inorganic Chemicals Industry, 2020, 52(12): 75-79. |
[9] | Yuan Yawei,Li Yong. Research progress of ZSM-5 molecular sieve adsorbents used in pollution control [J]. Inorganic Chemicals Industry, 2019, 51(10): 18-21. |
[10] | ZHAO Yun, YANG Xu, DAN Jian-Ming, QIAO Xiu-Wen, LI Hong-Ling, HONG Cheng-Lin. Study on preparation of silica nanoparticles by silicon tetrachloride with air blowing method [J]. INORGANICCHEMICALSINDUSTRY, 2014, 46(8): 28-. |
[11] | TAN Xiu-Min, ZHANG Xiu-Feng, ZHANG Li-Zhen. Study on bromine extraction technology of Jiangling depression deep brine [J]. INORGANICCHEMICALSINDUSTRY, 2013, 45(5): 13-. |
[12] | Xing Shujian;Zang Jiazhong;Liu Wei;Liu Guanfeng;Sun Chunhui;Yu Haibin. Progress on industrial application of molecular sieve adsorbents [J]. INORGANICCHEMICALSINDUSTRY, 2009, 0(3): 0-0. |
[13] | Liu Xianglai. Improvement of utilization rate of air in hydrogen peroxide unit [J]. INORGANICCHEMICALSINDUSTRY, 2009, 0(1): 0-0. |
[14] | Ye Yiyin. On domestic and international sodium chlorate manufacturing and equipment technology [J]. INORGANICCHEMICALSINDUSTRY, 2008, 0(2): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297