Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (1): 7-13.doi: 10.11962/1006-4990.2020-0086
Previous Articles Next Articles
Feng Qing1,2(),Zeng Xianjun1,2,Zhang Lijie1,2,Li He1,2,Meng Guangying1,2,Sun Yanmin1,2(
)
Received:
2020-07-28
Online:
2021-01-10
Published:
2021-01-08
Contact:
Sun Yanmin
E-mail:fengqing0707@126.com;yanmin2988@163.com
CLC Number:
Feng Qing,Zeng Xianjun,Zhang Lijie,Li He,Meng Guangying,Sun Yanmin. Summary of transition metal manganese-based denitration catalyst for low temperature NH3-SCR[J]. Inorganic Chemicals Industry, 2021, 53(1): 7-13.
"
催化剂 | 制备方法 | 条件 | NO转化率/% | ||
---|---|---|---|---|---|
初始条件 | 加入SO2和H2O | 停加SO2和H2O | |||
Cu1Mn0.5Ti0.5Ox[ | 共沉淀法 | 379 mg/m3 NH3,643 mg/m3 NO,411 mg/m3 NO2,286 mg/m3 SO2, 体积分数5% H2O和5% O2 ,Ar作平衡气,200 ℃ | 90 | 64.6 | 73.4 |
MnNiTiOx[ | 共沉淀法 | 379 mg/m3 NH3,670 mg/m3 NO,286 mg/m3 SO2 ,体积分数 10% H2O 和 5% O2 ,He作平衡气,300 ℃ | 85 | 70~75 | 85 |
V-W-Mn-Ce/TiOx[ | 浸渍法 | 379 mg/m3 NH3,670 mg/m3 NO,1 000 mg/m3 SO2,体积分数 10% H2O和5% O2,N2作平衡气,240 ℃ | 100 | >80 | 85 |
CuyMnzAl1-zOx[ | 共沉淀法 | 379 mg/m3 NH3,670 mg/m3 NO,286 mg/m3 SO2,体积分数 5% H2O和5% O2,Ar作平衡气,150 ℃ | 92.1 | 64.9 | 80.7 |
Mn0.5W0.1TiOx[ | 共沉淀法 | 379 mg/m3 NH3,670 mg/m3 NO,体积分数5% O2,N2作平衡气,200 ℃ | 95%以上 | — | — |
Fe-Co-Mn-Ce/TiO2[ | 浸渍法 | 379 mg/m3 NH3,670 mg/m3 NO,571 mg/m3 SO2,体积分数 10% H2O和6% O2,N2作平衡气,200 ℃ | 100 | 85 | >90 |
W-MnOx-TiO2[ | 共沉淀法 | 759 mg/m3 NH3,1339 mg/m3 NO,286 mg/m3 SO2 ,体积分数 10% H2O 和 5% O2 ,He作平衡气,140~260 ℃ | 100 | >95 | — |
W-SnMnCeOx[ | 共沉淀法 | 379 mg/m3 NH3,670 mg/m3 NO,286 mg/m3 SO2 ,体积分数 5% H2O 和 5% O2 ,N2作平衡气,200 ℃ | 100 | >80 | >90 |
[1] |
Xin Ying, Li Qian, Zhang Zhaoliang. Zeolitic materials for De-NOxselective catalytic reduction[J]. Chem.Cat.Chem., 2018,10:29-41.
doi: 10.1002/cctc.v10.1 |
[2] | Damma D, Boningari T, Ettireddy P R, et al. Direct decomposition of NOx over TiO2 supported transition metal oxides at low temperatur-es[J]. Industrial & Engineering Chemistry Research, 2018,57(49):16615-16621. |
[3] | Chen Minjun, Yang Jianping, Liu Yong, et al. TiO2 interpenetratingnetworks decorated with SnO2 nanocrystals:Enhanced activity of selective catalytic reduction of NO with NH3[J]. Journal of Materlals Chemistry A, 2015,3(4):1405-1409. |
[4] | Thirupathi B, Koirala R, Smirniotis P G. Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis:Structural and catalytic properties[J]. App-lied Catalysis B:Environmental, 2012,127:255-264. |
[5] | Yang Liu, You Xiaochen, Sheng Zhongyi, et al. Promoting effect of noble metals(Rh,Ru,Pt,Pd)doping on the performances of MnOx-CeO2/graphene catalysts for selective catalytic reduction of NO with NH3 at low temperature[J]. New Journal of Chemistry, 2018: 10.1039.C8NJ01417E-. |
[6] |
Wang Xiuyun, Wen Wu, Su Yanqing, et al. Influence of transition metals(M=Co,Fe and Mn)on ordered mesoporous CuM/CeO2 cata-lysts and applications in selective catalytic reduction of NOx with H2[J]. RSC Advances, 2015,5(77):63135-63141.
doi: 10.1039/C5RA12027F |
[7] | Liu Jie, Li Xinyong, Zhao Qidong, et al. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide:In situ FTIR analysis for structure-activity correlation[J]. Applied Ca-talysis B:Environmental, 2017,200:297-308. |
[8] | Smirniotis P G, Pena D A, Uphade B S. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn,Cr,and Cu oxides supported on hombikat TiO2[J]. Chembiochem, 2001,32(40):2479-2482. |
[9] | Wang Peng, Sun Hong, Quan Xie, et al. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Hazar-dous Materials, 2015,301(1):512-521. |
[10] |
Li Xiaojian, Du Yali, Guo Xingmei, et al. Synjournal of a novel NiMnTi mixed metal oxides from LDH precursor and its catalytic application for selective catalytic reduction of NOx with NH3[J]. Catalysis Letters, 2019,149:456-464.
doi: 10.1007/s10562-018-2626-7 |
[11] | Li Lulu, Wu Yaohui, Hou Xueyan, et al. An investigation of two-phase intergrowth and coexistence in Mn-Ce-Ti-O catalysts for the selective catalytic reduction of NO with NH3:Structure activity relationship and reaction mechanism[J]. Industrial & Engineering Chemistry Research, 2019,58:849-862. |
[12] | Yang Gang, Zhao Haitao, Luo Xiang, et al. Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts[J]. Applied Ca-talysis B:Environmental, 2019,245:743-752. |
[13] |
Wang Zhongyi, Guo Ruitang, Shi Xu, et al. The enhanced perfor-mance of Sb-modified Cu/TiO2 catalyst for selective catalytic reduc-tion of NOx with NH3[J]. Applied Surface Science, 2019,475:334-341.
doi: 10.1016/j.apsusc.2018.12.281 |
[14] |
Damma D, Ettireddy P R, Reddy B M, et al. A review of low tem-perature NH3-SCR for removal of NOx[J]. Catalysts, 2019,9(4):349.
doi: 10.3390/catal9040349 |
[15] |
Shen Boxiong, Wang Fumei, Liu Ting. Homogeneous MnOx-CeO2 pellets prepared by a one-step hydrolysis process for low-tem-perature NH3-SCR[J]. Powder Technology, 2014,253:152-157.
doi: 10.1016/j.powtec.2013.11.015 |
[16] |
Andreoli S, Deorsola F A, Pirone R. MnOx-CeO2 catalysts synthe-sized by solution combustion synjournal for the low-temperature NH3-SCR[J]. Catalysis Today, 2015,253:199-206.
doi: 10.1016/j.cattod.2015.03.036 |
[17] |
Tang Xingfu, Li Junhua, Wei Lisi, et al. MnOx-SnO2 catalysts synt-hesized by a redox coprecipitation method for selective catalytic reduction of NO by NH3[J]. Chinese Journal of Catalysis, 2008,29(6):531-536.
doi: 10.1016/S1872-2067(08)60049-2 |
[18] |
Chen Zhihang, Yang Qing, Li Hua, et al. Cr-MnOx mixed-oxide ca-talysts for selective catalytic reduction of NOx with NH3 at low tem-perature[J]. Journal of Catalysis, 2010,276(1):56-65.
doi: 10.1016/j.jcat.2010.08.016 |
[19] |
Zhang Lei, Shi Liyi, Huang Lei, et al. Rational design of high-per-formance DeNOx catalysts based on MnxCo3O4 nanocages derived from metal-organic frameworks[J]. ACS Catalysis, 2014,4(6):1753-1763.
doi: 10.1021/cs401185c |
[20] |
Li Yi, Wan Yuan, Li Yanping, et al. Low-temperature selective ca-talytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexago-nal microsheets[J]. ACS Applied Materials & Interfaces, 2016,8(8): 10.1021/acsami.5b10264.
doi: 10.1021/acsami.5b11397 pmid: 26863181 |
[21] |
Fang De, Xie Junlin, Mei Di, et al. Effect of CuMn2O4 spinel in Cu-Mn oxide catalysts on selective catalytic reduction of NOx with NH3 at low temperature[J]. Rsc Advances, 2014,4(49):25540.
doi: 10.1039/c4ra02824d |
[22] | Han Yanlin, Mu Jinchen, Li Xinyong, et al. Triple-shelled NiMn2O4 hollow spheres as an efficient catalyst for low-temperature selective catalytic reduction of NOx with NH3[J]. Chemical Communications, 2018,10:1-3. |
[23] |
Gao Fengyu, Tang Xiaolong, Yi Honghong, et al. Improvement of activity,selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx[J]. Applied Surface Science, 2019,466:411-424.
doi: 10.1016/j.apsusc.2018.09.227 |
[24] | Yan Qinghua, Chen Sining, Zhang Cheng, et al. Synjournal and ca-talytic performance of Cu1Mn0.5Ti0.5Ox mixed oxide as low-tempe-rature NH3-SCR catalyst with enhanced SO2 resistance[J]. App-lied Catalysis B:Environment, 2018,238:236-247. |
[25] |
Liu Jie, Li Xinyong, Li Ruoyun, et al. Facile synjournal of tube-shap-ed Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NOx by NH3[J]. Applied Catalysis A: General, 2018,549:289-301.
doi: 10.1016/j.apcata.2017.10.010 |
[26] | 黄金, 仲兆平, 朱林, 等. 锰铈改性钒钨钛中低温 SCR 催化剂脱硝及抗水抗硫性能[J]. 化工进展, 2018,37(6):2242-2248. |
[27] |
Yan Qinghua, Chen Sining, Qiu Lei, et al. The synjournal of CuyMnzAl11-zOx mixed oxide as a low-temperature NH3-SCR cataly-st with enhanced catalytic performance[J]. Dalton Transaction, 2018,47:2992-3004.
doi: 10.1039/C7DT02000G |
[28] | Geng Yang, Shan Wenpo, Yang Shijian, et al. W-modified Mn-Ti mixed oxide catalyst for the selective catalytic reduction of NO with NH3[J]. Industrial & Engineering Chemistry Research, 2018,57:9112-9119. |
[29] | 朱少文, 沈伯雄, 池桂龙, 等. 铁钴共掺杂的Mn-Ce/TiO2催化剂低温SCR脱硝[J]. 环境工程学报, 2017,11(6):3633-3639. |
[30] |
Wang Xiaomei, Li Xinyong, Zhao Qidong, et al. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic re-duction of NO with NH3[J]. Chemical Engineering Journal, 2016,288:216-222.
doi: 10.1016/j.cej.2015.12.002 |
[31] |
Zhang Tao, Qiu Feng, Chang Huazhen, et al. Novel W-modified SnMnCeOx catalyst for the selective catalytic reduction of NOx with NH3[J]. Catalysis Communications, 2017,100:117-120.
doi: 10.1016/j.catcom.2017.06.035 |
[32] |
France L J, Yang Qing, Li Wan, et al. Ceria modified FeMnOx-enh-anced performance and sulphur resistance for low-temperature SCR of NOx[J]. Applied Catalysis B:Environmental, 2017,206:203-215.
doi: 10.1016/j.apcatb.2017.01.019 |
[33] |
Liu Zhiming, Zhu Junzhi, Li Junhua, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014,6:14500-14508.
doi: 10.1021/am5038164 pmid: 25046245 |
[34] |
Gao Fengyu, Tang Xiaolong, Yi Honghong, et al. Promotional mech-anisms of activity and SO2,tolerance of Co or Ni-doped MnOx-CeO2,catalysts for SCR of NOx with NH3,at low temperature[J]. Chemical Engineering Journal, 2017,317:20-31.
doi: 10.1016/j.cej.2017.02.042 |
[35] |
Fang Ningjie, Guo Jiaxiu, Shu Song, et al. Enhancement of low-tem-perature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2,catalyst for NO removal by NH3-SCR[J]. Chemical Engineering Journal, 2017,325:114-123.
doi: 10.1016/j.cej.2017.05.053 |
[36] |
Shen Boxiong, Wang Yinxin, Wang Fumei, et al. The effect of Ce-Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low tempera-ture[J]. Chemical Engineering Journal, 2014,236:171-180.
doi: 10.1016/j.cej.2013.09.085 |
[37] |
Yao Xiaojiang, Li Lulu, Zou Weixin, et al. Preparation,characte-rization,and catalytic performance of high efficient CeO2-MnOx-Al2O3 catalysts for NO elimination[J]. Chinese Journal of Catalysis, 2016,37(8):1369-1380.
doi: 10.1016/S1872-2067(15)61098-1 |
[38] | Lee S M, Park K H, Hong S C . MnOx/CeO2-TiO2 mixed oxide cataly-sts for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chemical Engineering Journal, 2012, 195-196. |
[39] |
Wang Chao, Yu Feng, Zhu Mingyuan, et al. Microspherical MnO2-CeO2-Al2O3 mixed oxide for monolithic honeycomb catalyst and application in selective catalytic reduction of NOx with NH3 at 50-150 ℃[J]. Chemical Engineering Journal, 2018,346:182-192.
doi: 10.1016/j.cej.2018.04.033 |
[40] | Smirniotis P G, Sreekanth P M, Pena D A, et al. Manganese oxide catalysts supported on TiO2,Al2O3,and SiO2:A comparison for low-temperature SCR of NO with NH3[J]. Industrial & Engineering Chemistry Research, 2006,45:6436-6443. |
[41] | Schill L, Putluru S S R,Jensen A D.et al.Mn-Fe/Al2O3 catalyst synthesized by deposition precipitation for low-temperature selec-tive catalytic reduction of NO with NH3[J]. Catalysis Letters, 2015,145(9):1724-1732. |
[42] | 陈焕章, 李宏, 李花, 等. 负载型Mn-Fe/γ-Al2O3低温脱硝催化剂的性能[J]. 化工进展, 2016,35(4):1107-1112. |
[43] | 孟刘邦, 管学茂, 房晶瑞, 等. 不同载体Mn-Ce催化剂的制备及其脱硝性能[J]. 材料科学与工程学报, 2018,36(2):7-12. |
[44] | Pena D A, Uphade B S, Smirniotis S P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:I.Evaluation and characterization of first row transition metals[J]. Catalysis, 2004,221:421-431. |
[45] | 刘纳, 何峰, 谢峻林, 等. Fe掺杂Mn/TiO2低温脱硝催化剂的催化性能研究[J].人工晶体学报, 2017(3):103-107. |
[46] |
Liu Jian, Guo Ruitang, Li Mingyuan, et al. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification:A mecha-nism study[J]. Journal of Fuel, 2018,223(7):385-393.
doi: 10.1016/j.fuel.2018.03.062 |
[47] |
Xu Quan, Su Rigu, Cao Li, et al. Facile preparation of high-perfor-mance Fe-doped Ce-Mn/TiO2 catalysts for the low-temperature selective catalytic reduction of NOx with NH3[J]. RSC Advances, 2017,7(77):48785-48792.
doi: 10.1039/C7RA07854D |
[48] | Xu Quan, Yang Wenjing, Cui Shitong, et al. Sulfur resistance of Ce-Mn/TiO2 catalysts for low-temperature NH3-SCR[J]. Royal So-ciety Open Science, 2018,5(3):171846. |
[49] |
Xu Yifan, Liu Rong, Ye Fei, et al. MnOx-CeO2 catalysts supported by Ti-bearing blast furnace slag for selective catalytic reduction of NO with NH3 at low temperature[J]. Journal of the Air & Waste Management Association, 2017,67(8):899-909.
doi: 10.1080/10962247.2017.1302021 pmid: 28287904 |
[50] | Li Ge, Wang Baodong, Wang Zhencui, et al. Reaction mechanism of low-temperature selective catalytic reduction of NOx over Fe-Mn oxides supported on fly ash-derived SBA-15 molecular sieves: structure-activity relationships and in situ DRIFT analysis[J]. The Journal of Physical Chemistry C, 2018,122(35):20210-20231. |
[51] | 黄增斌, 李翠清, 王振, 等. 不同分子筛负载锰铈催化剂的低温NH3-SCR脱硝性能[J]. 燃料化学学报, 20|16,11(44):1388-1393. |
[52] | Zhou Guangying, Zhong Biaocheng, Wang Wenhui, et al. In situ DRIFTS study of NO reduction by NH3 over Fe-Ce-Mn/ZSM-5 catalysts[J]. Catalysis Today, 2011,175(1):157-163. |
[53] | Boningari T, Pappas D K, Smirniotis P G. Metal oxide-confined in-terweaved titania nanotubes M/TNT(M=Mn,Cu,Ce,Fe,V,Cr,and Co) for the selective catalytic reduction of NOx,in the presen-ce of excess oxygen[J]. Journal of Catalysis, 2018,365:320-333. |
[54] | Zhang Lei, Zhang Dengsong, Zhang Jianping, et al. Design of meso-TiO2@MnOx-CeOx/CNT with a core-shell structure as DeNOx cata-lysts:promotion of activity,stability and SO2-tolerance[J]. The Royal Society of Chemistry, 2013,5:9821-9829. |
[55] |
Lee T Y, Liou S, Bai H. Comparison of titania nanotubes and tita-nium dioxide as supports of low-temperature selective catalytic re-duction catalysts under sulfur dioxide poisoning[J]. Journal of the Air & Waste Management Association, 2017,67(3):292-305.
doi: 10.1080/10962247.2016.1231144 pmid: 27649768 |
[1] | ZHANG Bao, QUAN Kaidong, WANG Yongfeng, HAN Fei, SHI Aiwen, LIU Xin, WANG Xiaomin. Study on fabrication of nanoflower-like Fe y -NiCoS x @NF catalysts and their application in hydrogen evolution and oxygen evolution during seawater electrolysis [J]. Inorganic Chemicals Industry, 2025, 57(2): 130-137. |
[2] | LU Qin, FANG Wei, ZHAO Lei. Preparation of graphitized carbon modified carbonized rice husk foam and its solar steam generation performance [J]. Inorganic Chemicals Industry, 2023, 55(7): 122-129. |
[3] | LI Haitao,ZHAO Yinfeng. Nitriding SBA-15 loaded highly dispersed transition metals for efficient direct dehydrogenation of propane [J]. Inorganic Chemicals Industry, 2023, 55(2): 141-148. |
[4] | PENG Chenxi, LIU Jun. Research progress of layered transition metal oxides cathode materials for sodium-ion batteries [J]. Inorganic Chemicals Industry, 2023, 55(10): 1-12. |
[5] | Sun Haijie,Mei Yangyang,Chen Zhihao,Chen Lingxia,Zhang Qiaoyu,Liu Xingai. Performance of Fe,Co,Ni,Cu and Zn catalysts for hydrogen generation from catalytic hydrolysis of ammonia borane [J]. Inorganic Chemicals Industry, 2021, 53(1): 102-106. |
[6] | Zhang Jie,Zhao Mengjie,Cui Yingqi,Li Chenggang,Gao Jinhai. Research progress in effect of doping on properties of CeO2-based electrolyte materials [J]. Inorganic Chemicals Industry, 2020, 52(5): 1-5. |
[7] | Long Yunfei,Su Jing,Lü Xiaoyan,Wen Yanxuan. Advances in transition metal fluoride phosphate cathode materials for lithium-ion batteries and sodium-ion batteries [J]. Inorganic Chemicals Industry, 2020, 52(3): 28-34. |
[8] | DU Xu, PAN Hong-Yan, Ge-Shi-Mei, Lin- Qian. Performance of transition metal modified PdO/γ-Al2O3 catalyst in direct synthesis of hydrogen peroxide from H2 and O2 [J]. INORGANICCHEMICALSINDUSTRY, 2013, 45(10): 49-. |
[9] | YANG Lei-Lei, LI Fa-Qiang, JIA Guo-Feng, PENG Zheng-Jun, ZHU Chao-Liang, ZHU Hong. Research progress in cathode materials for rechargeable magnesium battery [J]. INORGANICCHEMICALSINDUSTRY, 2012, 44(2): 6-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297