Inorganic Chemicals Industry ›› 2019, Vol. 51 ›› Issue (6): 83-87.
• Catalytic Materials • Previous Articles Next Articles
Xu Yuansheng,Li Jianwei,Ma Yan,Li Guowang,Zhang Maoliang,Shan Xueqiang
Received:
2019-01-24
Online:
2019-06-10
Published:
2020-05-12
CLC Number:
Xu Yuansheng,Li Jianwei,Ma Yan,Li Guowang,Zhang Maoliang,Shan Xueqiang. Study on preparation and property of CdS-TiO2/zeolite composite catalysts[J]. Inorganic Chemicals Industry, 2019, 51(6): 83-87.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Neppolian B, Mine S, Horiuchi Y , et al. Efficient photocatalytic de-gradation of organics present in gas and liquid phases using Pt-TiO2/zeolite(H-ZSM)[J]. Chemosphere, 2016,153:237-243.
doi: 10.1016/j.chemosphere.2016.03.063 pmid: 27016820 |
[2] |
Wang Z Q, Liang H, Liao L M , et al. Zeolite supported-nano TiO2 composites prepared by a facile solid diffusion process as high per-formance photocatalysts[J]. Journal of Nanoscience and Nanotech-nology, 2018,18:5726-5730.
doi: 10.1166/jnn.2018.15403 pmid: 29458632 |
[3] |
Mohamad Alosfur F K, Ridha N J, Mohammad Hafizuddin Haji J , et al. One-step formation of TiO2 hollow spheres via a facile microwave-assisted process for photocatalytic activity[J]. Nanotechnology, 2018,29(14):145707.
doi: 10.1088/1361-6528/aaabee pmid: 29384494 |
[4] | Parra M A, Elustondo D, Bermejo R , et al. Quantification of indoor and outdoor volatile organic compounds(VOCs) in pubs and cafes in Pamplona,Spain[J]. Atmospheric Environment, 2008,42:6647-6654. |
[5] |
Rosales A, Maury-Ramírez A, Gutiérrez R M D, et al. SiO2@TiO2 coating:synjournal,physical characterization and photocatalytic ev-aluation[J]. Coatings, 2018,8(4):120.
doi: 10.3390/coatings8040120 |
[6] |
Guo J, Van Bui H, Valdesueiro D , et al. Suppressing the photocata-lytic activity of TiO2 nanoparticles by extremely thin Al2O3 films grown by gas-phase deposition at ambient conditions[J]. Nanoma-terials, 2018,8(2):61.
doi: 10.3390/nano8020061 pmid: 29364840 |
[7] | Naik B, Moitra D, Dayananda D , et al. A facile method for prepara-tion of TiO2 nanoparticle loaded mesoporous γ-Al2O3:an efficient but cost-effective catalyst for dye degradation[J]. Journal of Nano-science & Nanotechnology, 2016,16(8):8544-8549. |
[8] | Chen J, Eberlein L, Langford C H . Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite[J]. Journal of Pho-tochemistry and Photobiology A, 2002,148(3):183-189. |
[9] | Dutta P K, Severance M . Photoelectron transfer in zeolite cages and its relevance to solar energy conversion[J]. Journal of Physical Che-mistry Letters, 2014,2(5):467-476. |
[10] |
Deng H, Zhang Y, Geng S . Enhanced copper removal from aqueous solution by hydrous TiO2/zeolite composite[J]. Advances in Applied Ceramics, 2018,117(2):1-9.
doi: 10.1080/17436753.2017.1369658 |
[11] |
Kovalevskiy N S, Lyulyukin M N, Selishchev D S , et al. Analysis of air photocatalytic purification using a total hazard index:Effect of the composite TiO2/zeolite photocatalyst[J]. Journal of Hazardous Materials, 2018,358:302-309.
doi: 10.1016/j.jhazmat.2018.06.035 pmid: 29990818 |
[12] | Pei C C, Leung W W F. Photocatalytic degradation of Rhodamine B by TiO2/ZnO nanofibers under visible-light irradiation[J]. Separa-tion and Purification Technology, 2013,114:108-116. |
[13] |
Lak A, Simchi A, Nemati Z A . Photocatalytic activity of TiO2-capp-ed ZnO nanoparticles[J]. Journal of Materials Science:Materials in Electronics, 2012,23(2):361-369.
doi: 10.1007/s10854-011-0396-8 |
[14] |
Kaneva N, Stambolova I, Blaskov V , et al. Microwave-assisted and conventional sol-gel preparation of photocatalytically active ZnO/TiO2/glass multilayers[J]. Central European Journal of Chemistry, 2013,11(7):1055-1065.
doi: 10.2478/s11532-013-0240-5 |
[15] |
Nah Y C, Shrestha N K, Kim D , et al. Electrochemical growth of self-organized TiO2-WO3 composite nanotube layers:effects of ap-plied voltage and time[J]. Journal of Applied Electrochemistry, 2013,43(1):9-13.
doi: 10.1007/s10800-012-0498-x |
[16] |
Chen L C, Tsai F R, Fang S H , et al. Properties of sol-gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination[J]. Electrochimica Acta, 2009,54(4):1304-1311.
doi: 10.1016/j.electacta.2008.09.009 |
[17] | Zhao W, Bai Z, Ren A , et al. Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers[J]. Applied Sur-face Science, 2010,256:3493-3498. |
[18] |
Chen S, Liu W, Zhang S , et al. Preparation and activity evaluation of relative p-n junction photocatalyst Co-TiO2/TiO2[J]. Journal of Sol-Gel Science and Technology, 2010,54(2):258-267.
doi: 10.1007/s10971-010-2179-8 |
[19] |
Wang M, Hua J H, Yang Y L . Fabrication of CDs/CdS-TiO2 ternay nano-composites for photocatalytic degradation of benzene and toluene under visible light irradiation[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018,199:102-109.
doi: 10.1016/j.saa.2018.03.041 pmid: 29574311 |
[20] | Yang Y, Yu C L, Guan C L . Study of the photocatalytic degradation of toluene over CdS-TiO2 nanoparticles supported on multi-walled carbon nanotubes by back propagation neural network[J]. Fuller-enes,Nanotubes and Carbon Nanostructures, 2018,26(5):246-254. |
[21] |
Prasannalakshmi P, Shanmugam N . Photocatalytic decolourization of brilliant green and methylene blue by TiO2/CdS nanorods[J]. Journal of Solid State Electrochemistry, 2017,21(6):1751-1766.
doi: 10.1007/s10008-017-3522-6 |
[22] |
Zhao H, Cui S, Yang L , et al. Synjournal of hierarchically meso-mac- roporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity[J]. Journal of Colloid and In-terface Science, 2017,512:47-54.
doi: 10.1016/j.jcis.2017.10.011 pmid: 29054006 |
[23] |
Liu C, Yang Y, Li J , et al. Phase transformation synjournal of TiO2/CdS heterojunction film with high visible-light photoelectrochemical activity[J]. Nanotechnology, 2018,29(26):265401.
doi: 10.1088/1361-6528/aabd6e pmid: 29638218 |
[24] | Rimeh D, Patrick D, Didier R . Modified TiO2 for environmental pho-tocatalytic applications:a review[J]. Industrial & Engineering Che-mistry Research, 2013,52(10):3581-3599. |
[25] | Srinivasan S S, Wade J, Stefanakos E K . Visible light photocatalysis via CdS/TiO2 nanocomposite materials[J]. Journal of Nanomateri-als, 2006,2006(1):24. |
[26] |
Wang J Y, Liu Z H, Zheng Q , et al. Preparation of photosensitized nanocrystalline TiO2 hydrosol by nanosized CdS at low temperature[J]. Nanotechnology, 2006,17(18):4561-4566.
doi: 10.1088/0957-4484/17/18/006 pmid: 21727577 |
[1] | ZHU Jicheng, YANG Qixin, LIANG Haoquan, WANG Zengkun, OUYANG Fugui, DI Jing, GAI Xikun. Effect of confined catalyst Ni@S2 on performance of methane dry reforming reaction [J]. Inorganic Chemicals Industry, 2025, 57(2): 138-146. |
[2] | LIU Qingcui, LI Yunqing, PANG Ruiqi, TIAN Yaping, CHEN Yiying, LI Fang, LI Qiming. Preparation of Zn/Co-ZIF derived porous carbon supported Pd as catalyst and its application to formic acid dehydrogenation [J]. Inorganic Chemicals Industry, 2024, 56(6): 147-152. |
[3] | LI Jiangpeng, ZHANG Huibin. Synergistic degradation of methylene blue by photo-Fenton and photocatalytic with 3D porous LaFeO3/CeO2/SrTiO3 [J]. Inorganic Chemicals Industry, 2024, 56(5): 141-148. |
[4] | WANG Chao, SONG Guoliang, XIAO Han. Industrial application of THFS-2 sulfurized reforming prehydrogenation catalysts [J]. Inorganic Chemicals Industry, 2024, 56(5): 94-100. |
[5] | JIN Suna, LÜ Ruiliang. Research progress of heterogeneous catalytic ozonation for industrial wastewater treatment [J]. Inorganic Chemicals Industry, 2024, 56(3): 28-38. |
[6] | CHEN Xingliang, FAN Wenjuan, CHANG Hui, HUANG Haiping, JIANG Zhiqiang. Study on collaborative strategy between Fe3+ and Ni-based metal-organic frameworks for boosting electrocatalytic oxygen evolution [J]. Inorganic Chemicals Industry, 2024, 56(2): 152-158. |
[7] | HOU Zhanggui, WU Chongchong, ZHANG Siran. Research progress of CO2 conversion via Reverse Water-Gas Shift reaction [J]. Inorganic Chemicals Industry, 2024, 56(11): 105-115. |
[8] | MA Yihong, CHEN Xingtao, TANG Lei. Treatment of printing wastewater by chemical coagulation-TiO2/g-C3N5 photocatalytic degradation [J]. Inorganic Chemicals Industry, 2024, 56(10): 151-158. |
[9] | JIN Shengshi, LIU Kaijie, LIU Qiuwen, ZHANG Yibo, YANG Xiangguang. Study on catalytic performance of phosphoric acid modified CeO2 nanorod supported Pt catalyst for propane combustion [J]. Inorganic Chemicals Industry, 2024, 56(1): 141-148. |
[10] | GUO Zini, QU Jiyan, LUO Jianhong. Oxidation of NO x by low-temperature plasma using catalysts with different band gaps [J]. Inorganic Chemicals Industry, 2023, 55(9): 126-133. |
[11] | LIU Wei, XU Yan, CHEN Yongsheng, SUN Chunhui, ZHANG Jingcheng, ZHU Jinjian, LIU Yang. Effect of alkaline earth metals on performance of Cu/Al2O3 ester hydrogenation catalyst [J]. Inorganic Chemicals Industry, 2023, 55(9): 140-144. |
[12] | MA Chao, HU Jieqiong, XIE Ming, CHEN Yongtai, ZHANG Qiao, CHEN Song, FANG Jiheng, QIU Leqi. Research progress of preparation of Pt-Au-Ni nanoalloys [J]. Inorganic Chemicals Industry, 2023, 55(9): 26-32. |
[13] | YANG Bo, LIANG Zhiyan, LIU Wenyuan, CAO Jiazhen, LIU Xinyue, XING Mingyang. Research progress of application of molybdenum-based catalytic materials for water pollution control [J]. Inorganic Chemicals Industry, 2023, 55(8): 1-12. |
[14] | MA Zhiyuan, LÜ Dawei, WANG Hui, JIN Nannan, ZHU Jinjian, ZHANG Jingcheng. Industrial application of THDS-2/3 catalyst in capacity expansion of hydrofining plant [J]. Inorganic Chemicals Industry, 2023, 55(8): 140-144. |
[15] | CHEN Junxue, MO Jianxin, ZHOU Zhiyu, LI Zhonglin, WANG Ding, LI Yuping, HU Yongjun, JIANG Xuexian, LI Yibing. Study on synthesis of NaFe x Cr y (SO4)2(OH)6 and their electrochemical properties [J]. Inorganic Chemicals Industry, 2023, 55(8): 71-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297