Inorganic Chemicals Industry ›› 2025, Vol. 57 ›› Issue (8): 1-11.doi: 10.19964/j.issn.1006-4990.2024-0695
• Reviews and Special Topics • Next Articles
WANG Zehui1(), LI Enze2, QIU Xunzhao1, SHANG Wenxin1, LI Shasha1(
), FENG Guobin1, SHI Caixia1
Received:
2024-12-26
Online:
2025-08-10
Published:
2025-02-14
Contact:
LI Shasha
E-mail:wzh46915@163.com;lisstylg@hotmail.com
CLC Number:
WANG Zehui, LI Enze, QIU Xunzhao, SHANG Wenxin, LI Shasha, FENG Guobin, SHI Caixia. Research progress on anode and cathode electrocatalysts for hydrogen production by directly seawater electrolysis[J]. Inorganic Chemicals Industry, 2025, 57(8): 1-11.
Fig.7
Theoretical study on interaction between electrocatalyst of CoP and Cl- in electrolyte of seawater[54](a),schematic diagrams of efficient traffic of bubbles and precipitating on/in NCP/CP[55](b),schematic illustration of the OH spillover pathway in C-WC-RuMg for direct seawater electrolysis[56](c),schematic of NH4+ formation on Mo2N surface that preventing precipitate formation[57](d)"
[1] | MAJUMDAR A, DEUTCH J M, PRASHER R S,et al.A framework for a hydrogen economy[J].Joule,2021,5(8):1905-1908. |
[2] | 戴远哲,涂远东,曹圆媛.我国氢能产业发展现状、制约瓶颈及应对策略[J].能源研究与利用,2024(4):29-33,39. |
DAI Yuanzhe, TU Yuandong, CAO Yuanyuan.Development status,constraints and countermeasures of hydrogen energy industry in China[J].Energy Research & Utilization,2024(4):29-33,39. | |
[3] | GERMSCHEIDT R L, MOREIRA D E B, YOSHIMURA R G,et al.Hydrogen environmental benefits depend on the way of production:An overview of the main processes production and challenges by 2050[J].Advanced Energy and Sustainability Research,2021,2(10):2100093. |
[4] | LI Xiaona, RAORANE C J, XIA Changlei,et al.Latest approaches on green hydrogen as a potential source of renewable energy towards sustainable energy:Spotlighting of recent innovations,challenges,and future insights[J].Fuel,2023,334:126684. |
[5] | 魏晓天,袁昊骞,刘东.电解海水制氢的机遇与挑战[J].当代化工研究,2023(7):5-7. |
WEI Xiaotian, YUAN Haoqian, LIU Dong.Opportunities and challenges of seawater electrolysis hydrogen production[J].Modern Chemical Research,2023(7):5-7. | |
[6] | 王秀林,戴若云,张雨晴,等.海水直接电解制氢研究进展[J].现代化工,2023,43(11):56-60. |
WANG Xiulin, DAI Ruoyun, ZHANG Yuqing,et al.Research progress on hydrogen production by direct electrolysis of seawater[J].Modern Chemical Industry,2023,43(11):56-60. | |
[7] | 胡鹏,李志川,李子航,等.深远海原位电解海水制氢的战略及技术研究[J].太阳能学报,2024,45(8):63-70. |
HU Peng, LI Zhichuan, LI Zihang,et al.Research on strategic and technical of hydrogen production by deep offshore in situ electrolysis of seawater[J].Acta Energiae Solaris Sinica,2024,45(8):63-70. | |
[8] | Xiang LYU, SEROV A.Cutting-edge methods for amplifying the oxygen evolution reaction during seawater electrolysis:A brief synopsis[J].Industrial Chemistry & Materials,2023,1(4):475-485. |
[9] | HUANG Chuqiang, WANG Zhouzhou, CHENG Shaojun,et al.Challenges and strategies of chlorine inhibition in anode systems for seawater electrolysis[J].Science China Chemistry,2024,67(10):3198-3208. |
[10] | 崔柏桦,施毅,李根,等.海水电解面临的挑战与机遇:含氯电化学中先进材料研究进展[J].物理化学学报,2022,38(6):79-89. |
CUI Baihua, SHI Yi, LI Gen,et al.Challenges and opportunities for seawater electrolysis:A mini-review on advanced materials in chlorine-involved electrochemistry[J].Acta Physico-Chimica Sinica,2022,38(6):79-89. | |
[11] | LIU Guangbo, XU Yingshuang, YANG Teng,et al.Recent advances in electrocatalysts for seawater splitting[J].Nano Materials Science,2023,5(1):101-116. |
[12] | CHATENET M, POLLET B G, DEKEL D R,et al.Water electrolysis:From textbook knowledge to the latest scientific strategies and industrial developments[J].Chemical Society Reviews,2022,51(11):4583-4762. |
[13] | 路文龙,张帅,吴亮.海水电解制氢研究进展[J].电源技术,2024,48(5):818-828. |
LU Wenlong, ZHANG Shuai, WU Liang.Research progress of hydrogen production by seawater electrolysis[J].Chinese Journal of Power Sources,2024,48(5):818-828. | |
[14] | BOLAR S, SHIT S, CHANDRA MURMU N,et al.Progress in theoretical and experimental investigation on seawater electrolysis:Opportunities and challenges[J].Sustainable Energy & Fuels,2021,5(23):5915-5945. |
[15] | HU Chun, YUE Kaihang, HAN Jiajia,et al.Misoriented high-entropy iridium ruthenium oxide for acidic water splitting[J].Science Advances,2023,9(37):eadf9144. |
[16] | HU Shuqi, GE Shiyu, LIU Heming,et al.Low-dimensional electrocatalysts for acidic oxygen evolution:Intrinsic activity,high current density operation,and long-term stability[J].Advanced Functional Materials,2022,32(23):2201726. |
[17] | 李涛,武斌,李会录,等.海水电解析氧反应催化剂的研究进展[J].现代化工,2021,41(8):24-28,32. |
LI Tao, WU Bin, LI Huilu,et al.Research progress on catalysts for oxygen evolution reaction through seawater electrolysis[J].Modern Chemical Industry,2021,41(8):24-28,32. | |
[18] | LI Shasha, LI Enze, AN Xiaowei,et al.Transition metal-based catalysts for electrochemical water splitting at high current density:Current status and perspectives[J].Nanoscale,2021,13(30):12788-12817. |
[19] | 苏建,宋华.特殊结构、高稳定性电解海水OER催化剂的研究进展[J].精细化工,2023,40(4):697-705,716. |
SU Jian, SONG Hua.Research progress on OER catalyst with special structure and high stability for seawater electrolysis[J].Fine Chemicals,2023,40(4):697-705,716. | |
[20] | 郑学文,赵蕊,吴家哲,等.电解海水催化剂的设计与改性[J].化工进展,2022,41(11):5800-5810. |
ZHENG Xuewen, ZHAO Rui, WU Jiazhe,et al.Design and modification of electrocatalysts for seawater splitting:A review[J].Chemical Industry and Engineering Progress,2022,41(11):5800-5810. | |
[21] | HU Huashuai, WANG Xiaoli, ATTFIELD J P,et al.Metal nitrides for seawater electrolysis[J].Chemical Society Reviews,2024,53(1):163-203. |
[22] | CHEN Lin, YU Chang, DONG Junting,et al.Seawater electrolysis for fuels and chemicals production:Fundamentals,achievements,and perspectives[J].Chemical Society Reviews,2024,53(14):7455-7488. |
[23] | HE Wenjun, LI Xinxin, TANG Cheng,et al.Materials design and system innovation for direct and indirect seawater electrolysis[J].ACS Nano,2023,17(22):22227-22239. |
[24] | 王岩,张树聪,汪兴坤,等.电解海水析氢反应过渡金属基催化剂的研究进展[J].应用化学,2022,39(6):927-940. |
WANG Yan, ZHANG Shucong, WANG Xingkun,et al.Research progress on transition metal-based catalysts for hydrogen evolution reaction via seawater electrolysis[J].Chinese Journal of Applied Chemistry,2022,39(6):927-940. | |
[25] | ZHANG Sixie, XU Wenwen, CHEN Haocheng,et al.Progress in anode stability improvement for seawater electrolysis to produce hydrogen[J].Advanced Materials,2024,36(37):2311322. |
[26] | LIU Yu, WANG Yong, FORNASIERO P,et al.Long-term durability of seawater electrolysis for hydrogen:From catalysts to systems[J].Angewandte Chemie International Edition,2024,63(47):e202412087. |
[27] | ZHANG Xinyu, XIE Jingyi, MA Yu,et al.An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction[J].Chemical Engineering Journal,2022,430:132312. |
[28] | 孟凡,张惠铃,姬姗姗,等.高效电解水制氢发展现状与技术优化策略[J].黑龙江大学自然科学学报,2021,38(6):702- 713. |
MENG Fan, ZHANG Huiling, JI Shanshan,et al.Progress and technology strategies of hydrogen evolution reaction by high efficiency water electrolysis[J].Journal of Natural Science of Heilongjiang University,2021,38(6):702-713. | |
[29] | ZHANG Dan, SHI Yue, YIN Jiao,et al.Recent advances for seawater hydrogen evolution[J].ChemCatChem,2024,16(14):e202301305. |
[30] | 申雪然,冯彩虹,代政,等.电解海水制氢的研究进展[J].化工新型材料,2021,49(12):55-60. |
SHEN Xueran, FENG Caihong, DAI Zheng,et al.Progress on hydrogen generation by splitting seawater[J].New Chemical Materials,2021,49(12):55-60. | |
[31] | YU Luo, ZHU Qing, SONG Shaowei,et al.Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J].Nature Communications,2019,10:5106. |
[32] | LONG Yanju, JIANG Pingping, LIAO Peisen,et al.Electronic structure regulation by Fe doped Ni-phosphides for long-term overall water splitting at large current density[J].Small,2024,20(46):2403991. |
[33] | XU Bo, LIANG Jie, SUN Xuping,et al.Designing electrocatalysts for seawater splitting:Surface/interface engineering toward enhanced electrocatalytic performance[J].Green Chemistry,2023,25(10):3767-3790. |
[34] | VOS J G, WEZENDONK T A, JEREMIASSE A W,et al.MnO x /IrO x as selective oxygen evolution electrocatalyst in acidic chloride solution[J].Journal of the American Chemical Society,2018,140(32):10270-10281. |
[35] | KUANG Yun, KENNEY M J, MENG Yongtao,et al.Solar-driven,highly sustained splitting of seawater into hydrogen and oxygen fuels[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(14):6624-6629. |
[36] | KANG Xin, YANG Fengning, ZHANG Zhiyuan,et al.A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer[J].Nature Communications,2023,14:3607. |
[37] | GUO Jiaxin, ZHENG Yao, HU Zhenpeng,et al.Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J].Nature Energy,2023,8(3):264-272. |
[38] | MA Tengfei, XU Wenwen, LI Boran,et al.The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes[J].Angewandte Chemie International Edition,2021,60(42):22740-22744. |
[39] | YU Meng, LI Jinhan, LIU Fangming,et al.Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting[J].Journal of Energy Chemistry,2022,72:361-369. |
[40] | LI Shasha, QIU Xunzhao, AN Xiaowei,et al.Metal-organic framework derived spinel tricobalt tetroxide with trifle iridium sites for near-pH-neutral seawater electrolysis[J].Chemical Engineering Journal,2024,491:151924. |
[41] | ZHUANG Linzhou, LI Jiankun, WANG Keyu,et al.Structural buffer engineering on metal oxide for long-term stable seawater splitting[J].Advanced Functional Materials,2022,32(25):2201127. |
[42] | HUANG Linsen, WANG Pengtang, JIANG Yunling,et al.Ethylene electrooxidation to 2-chloroethanol in acidic seawater with natural chloride participation[J].Journal of the American Chemical Society,2023,145(28):15565-15571. |
[43] | LIU Kesheng, GAO Xutao, LIU Chuxuan,et al.Energy-saving hydrogen production by seawater splitting coupled with PET plastic upcycling[J].Advanced Energy Materials,2024,14(17):2304065. |
[44] | WANG Haoyu, ZHAI Sixiang, WANG Hao,et al.Taking advantage of potential coincidence region:Insights into gas production behavior in advanced self-activated hydrazine-assisted alkaline seawater electrolysis[J].ACS Nano,2024.DOi:10.1021/acsnano.4c04831. |
[45] | GUO Lili, CHI Jingqi, ZHU Jiawei,et al.Dual-doping NiMoO4 with multi-channel structure enable urea-assisted energy-saving H2 production at large current density in alkaline seawater[J].Applied Catalysis B:Environmental,2023,320:121977. |
[46] | MAO Qiqi, DENG Kai, YU Hongjie,et al. In situ reconstruction of partially hydroxylated porous Rh metallene for ethylene glycol-assisted seawater splitting[J].Advanced Functional Materials,2022,32(31):2201081. |
[47] | DENG Binglu, SHEN Jie, LU Jinxing,et al.Ru doping triggering reconstruction of cobalt phosphide for coupling glycerol electrooxidation with seawater electrolysis[J].Journal of Energy Chemistry,2025,100:317-326. |
[48] | XU Kaiyang, LIANG Lecheng, LI Tong,et al.Pt1.8Pd0.2CuGa intermetallic nanocatalysts with enhanced methanol oxidation performance for efficient hybrid seawater electrolysis[J].Advanced Materials,2024,36(31):2403792. |
[49] | WU Jia, ZHAI Zhixiang, YIN Shibin,et al.General formation of interfacial assembled hierarchical micro-nano arrays for biomass upgrading-coupled hydrogen production[J].Advanced Functional Materials,2024,34(6):2308198. |
[50] | BAO Deyu, HUANG Linsen, GAO Yingjie,et al.Dynamic creation of a local acid-like environment for hydrogen evolution reaction in natural seawater[J].Journal of the American Chemical Society,2024,146(50):34711-34719. |
[51] | 张豹,权凯栋,王永锋,等.纳米花状Fey-NiCoSx@NF催化材料制备及电解海水制氢析氧的研究[J].无机盐工业,2025,57(2):130-137. |
ZHANG Bao, QUAN Kaidong, WANG Yongfeng,et al.Study on fabrication of nanoflower-like Fe y -NiCoS x @NF catalysts and their application in hydrogen evolution and oxygen evolution during seawater electrolysis[J].Inorganic Chemicals Industry,2025,57(2):130-137. | |
[52] | LIANG Jie, CAI Zhengwei, HE Xun,et al.Electroreduction of alkaline/natural seawater:Self-cleaning Pt/carbon cathode and on-site co-synthesis of H2 and Mg hydroxide nanoflakes[J].Chem,2024,10(10):3067-3087. |
[53] | ZHAO Liang, ZHOU Shuanglong, LV Zheng,et al.Anti-precipitation molecular metal chalcogenide complexes modification for efficient direct alkaline seawater splitting at the large current density[J].Applied Catalysis B:Environmental,2023,338:122996. |
[54] | XU Xinwu, LU Yang, SHI Junqin,et al.Corrosion-resistant cobalt phosphide electrocatalysts for salinity tolerance hydrogen evolution[J].Nature Communications,2023,14:7708. |
[55] | LIANG Jie, CAI Zhengwei, LI Zixiao,et al.Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities[J].Nature Communications,2024,15:2950. |
[56] | WU Huijuan, ZHAO Zhenyang, WANG Mao,et al.Alkaline-earth-metal regulated metal carbides with bioinspired gradient OH spillover for efficient and long-lasting direct seawater electrolysis[J].Journal of Materials Chemistry A,2024,12(18):10755-10763. |
[57] | ZHANG Xiaolong, YU Pengcheng, SUN Shuping,et al. In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting[J].Nature Communications,2024,15:9462. |
[1] | SUN Qinghao, LI Keyan, GUO Xinwen. Study on photocatalytic benzyl alcohol oxidation coupled with hydrogen production over Pd/ZnIn2S4 nanosheets [J]. Inorganic Chemicals Industry, 2025, 57(1): 113-119. |
[2] | LIU Min, HUANG Xiu, ZHANG Liyuan. Research progress of S-type heterojunction photocatalysts [J]. Inorganic Chemicals Industry, 2024, 56(7): 18-27. |
[3] | ZHOU Xuan, LI Mengrui, CHEN Yichen, FAN Huiqiang, WANG Bin, YUAN Gang. Research progress of nickel-based phosphide composites in improving of catalytic water electrolysis for hydrogen evolution performance [J]. Inorganic Chemicals Industry, 2024, 56(4): 8-15. |
[4] | LI Yuhang, WANG Yinbin, WEI Qiang. Preparation of Fe2O3-Co3O4 heterojunction by molten salt method and its hydrogen evolution performance [J]. Inorganic Chemicals Industry, 2023, 55(8): 51-58. |
[5] | MA Jingwen,WANG Jun,LI Xiang. Research progress on ruthenium-based catalysts for hydrogen evolution from alkaline water electrolysis [J]. Inorganic Chemicals Industry, 2022, 54(4): 69-73. |
[6] | TANG Hu,LIU Fang. Study on preparation of molybdenum cobalt binary sulfide and its performance in water splitting [J]. Inorganic Chemicals Industry, 2022, 54(2): 65-71. |
[7] | GONG Feilong,LIU Yuheng,LIU Mengmeng,WANG Guoqing. Research progress on pH-universal MoS2-based materials for electrocatalytic hydrogen evolution [J]. Inorganic Chemicals Industry, 2021, 53(11): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297