Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (5): 47-53.doi: 10.19964/j.issn.1006-4990.2021-0401
• Reviews and Special Topics • Previous Articles Next Articles
Received:
2021-07-06
Online:
2022-05-10
Published:
2022-05-31
CLC Number:
HAN Xiudong. Research progress on preparation method of platinum based ordered nano catalysts[J]. Inorganic Chemicals Industry, 2022, 54(5): 47-53.
Fig.4
HAADF-STEM images of intermetallic Pt3Sn nanocrystals of(a) concave cube and(c) cube with rich defects;Atomic?resolution HAADF-STEM images of the yellow box area(a,c) in HAADF-STEM images(b,d) [38];TEM image ofPtPb hexagonal nanoplates(e);SAED image of single PtPb hexagonal nanoplate(f)[39]"
1 | 邵志刚,衣宝廉.氢能与燃料电池发展现状及展望[J].中国科学院院刊,2019,34(4):469-477. |
SHAO Zhigang, YI Baolian.Developing trend and present status of hydrogen energy and fuel cell development[J].Bulletin of Chinese Academy of Sciences,2019,34(4):469-477. | |
2 | MA Zhong, CANO Z P, YU Aiping,et al.Enhancing oxygen reduction activity of Pt-based electrocatalysts:From theoretical mechanisms to practical methods[J].Angewandte Chemie International Edition,2020,59(42):18334-18348. |
3 | 马洋博,干林.燃料电池铂合金纳米晶催化剂的形貌控制及稳定性研究进展[J].科学通报,2017,62(25):2905-2918. |
MA Yangbo, GAN Lin.Progress in the morphology control and stability of shaped Pt alloy nanocrystal catalysts for fuel cells[J].Chinese Science Bulletin,2017,62(25):2905-2918. | |
4 | WANG Xiaoxia, SOKOLOWSKI J, LIU Hui,et al.Pt alloy oxygen-reduction electrocatalysts:Synthesis,structure,and property[J].Chinese Journal of Catalysis,2020,41(5):739-755. |
5 |
SUN Shouheng, MURRAY C B, WELLER D,et al.ChemInform abstract:Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J].ChemInform,2000,31(27).Doi:10.1002/ chin.200027244 .
doi: 10.1002/ chin.200027244 |
6 | CHUNG D Y, JUN S W, YOON G,et al.Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction[J].Journal of the American Chemical Society,2015,137(49):15478-15485. |
7 | LIU Zhufang, JACKSON G S, EICHHORN B W.Tuning the CO-tolerance of Pt-Fe bimetallic nanoparticle electrocatalysts through architectural control[J].Energy & Environmental Science,2011,4(5):1900-1903. |
8 | WANG D, XIN H L, HOVDEN R,et al.Structurally ordered intermetallic platinum⁃cobalt core⁃shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J].Nature Materials,2013,12(1):81-87. |
9 | LEONARD B M, ZHOU Qin, WU Diane,et al.Facile synthesis of PtNi intermetallic nanoparticles:Influence of reducing agent and precursors on electrocatalytic activity[J].Chemistry of Materials,2011,23(5):1136-1146. |
10 | XIA Baoyu, WU Haobin, WANG Xin,et al.One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction[J].Journal of the American Chemical Society,2012,134(34):13934-13937. |
11 | HODNIK N, JEYABHARATHI C, MEIER J C,et al.Effect of ordering of PtCu nanoparticle structure on the activity and stability for the oxygen reduction reaction[J].Physical Chemistry Chemical Physics,2014,16(27):13610-13615. |
12 | ZHANG Zhicheng, LUO Zhimin, CHEN Bo,et al.One-pot synthesis of highly anisotropic five⁃fold⁃twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation[J].Advanced Materials,2016,28(39):8712-8717. |
13 | ZHAO Xiao, GUNJI Takao, KANEKO T,et al.Evidence for interfacial geometric interactions at metal⁃support interfaces and their influence on the electroactivity and stability of Pt nanoparticles[J].Journal of Materials Chemistry A,2020,8(3):1368-1377. |
14 | GALEANO C, MEIER J C, PEINECKE V,et al.Toward highly stable electrocatalysts via nanoparticle pore confinement[J].Journal of the American Chemical Society,2012,134(50):20457-20465. |
15 | 李峥嵘,申涛,胡冶州,等.有序金属间化合物电催化剂在燃料电池中的应用进展[J].物理化学学报,2021,37(9):187-208. |
LI Zhengrong, SHEN Tao, HU Yezhou,et al.Progress on ordered intermetallic electrocatalysts for fuel cells application[J].Acta Physico-Chimica Sinica,2021,37(9):187-208. | |
16 | NAJAFISHIRTARI S, BRESCIA R, GUARDIA P,et al.Nanoscale transformations of alumina⁃supported AuCu ordered phase nanocrystals and their activity in CO oxidation[J].ACS Catalysis,2015,5(4):2154-2163. |
17 | LI Junrui, SHARMA S, LIU Xiaoming,et al.Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis[J].Joule,2019,3(1):124-135. |
18 | ZOU Liangliang, FAN Jing, ZHOU Yi,et al.Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol⁃tolerant oxygen reduction reactions[J].Nano Research,2015,8(8):2777-2788. |
19 | WANG Deli, YU Yingchao, XIN H L,et al.Tuning oxygen reduction reaction activity via controllable dealloying:A model study of ordered Cu3Pt/C intermetallic nanocatalysts[J].Nano Letters,2012,12(10):5230-5238. |
20 | MIURA A, WANG Hongsen, LEONARD B M,et al.Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts[J].Chemistry of Materials,2009,21(13):2661-2667. |
21 | GUNJI Takao, TANABE T, JEEVAGAN A J,et al.Facile route for the preparation of ordered intermetallic Pt3Pb-PtPb core⁃shell nanoparticles and its enhanced activity for alkaline methanol and ethanol oxidation[J].Journal of Power Sources,2015,273:990- 998 |
22 | SUN S, MURRAY C B, WELLER D,et al.Monodisperse FePt nano⁃ |
particles and ferromagnetic FePt nanocrystal superlattices[J].Sci⁃ | |
ence,2000,287(5460):1989-1992. | |
23 | KOCKRICK E, KRAWIEC P, SCHNELLE W,et al.Space-con⁃ |
fined formation of FePt nanoparticles in ordered mesoporous silica SBA- 15[J].Advanced Materials,2007,19(19):3021-3026. | |
24 | JI X, LEE K T, HOLDEN R,et al.Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes[J].Nature Chemistry,2010,2(4):286-293. |
25 | KANG E, JUNG H, PARK J G,et al.Block copolymer directed one⁃pot simple synthesis of L10-phase FePt nanoparticles inside ordered mesoporous aluminosilicate/carbon composites[J].ACS Nano,2011,5(2):1018-1025. |
26 | KIM J, LEE Y, SUN Shouheng.Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction[J].Journal of the American Chemical Society,2010,132(14):4996-4997. |
27 |
WANG Tanyuan, LIANG Jiashun, ZHAO Zhonglong,et al.Sub-6 nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain[J].Advanced Energy Materials,2019,9(17).Doi:10.1002/aenm.201803771 .
doi: 10.1002/aenm.201803771 |
28 | KIM H Y, CHO S, SA Y J,et al.Self⁃supported mesostructured Pt-based bimetallic nanospheres containing an intermetallic phase |
as ultrastable oxygen reduction electrocatalysts[J].Small,2016,12(38):5347-5353. | |
29 | KIM H Y, KIM J M,HA Y,et al.Activity origin and multifunctionality of Pt-based intermetallic nanostructures for efficient electrocatalysis[J].ACS Catalysis,2019,9(12):11242-11254. |
30 |
LEE J, YOO J M, YE Y,et al.Development of highly stable and mass transfer⁃enhanced cathode catalysts:Support⁃free electrospun intermetallic FePt nanotubes for polymer electrolyte membrane fuel cells[J].Advanced Energy Materials,2015,5(11).Doi:10.1002/aenm.201402093 .
doi: 10.1002/aenm.201402093 |
31 | KIM H Y, JOO S H.Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions[J].Journal of Materials Chemistry A,2020,8(17):8195-8217. |
32 |
YAN Yucong, DU J S, GILROY K D,et al.Intermetallic nanocrystals:Syntheses and catalytic applications[J].Advanced Materials,2017,29(14).Doi:10.1002/adma.201605997 .
doi: 10.1002/adma.201605997 |
33 | LEONARD B M, BHUVANESH N S P, SCHAAK R E.Low⁃temperature polyol synthesis of AuCuSn2 and AuNiSn2:Using solution chemistry to access ternary intermetallic compounds as nanocrystals[J].Journal of the American Chemical Society,2005,127(20):7326-7327. |
34 | CHEN Wei, YU Rong, LI Lingling,et al.A seed⁃based diffusion route to monodisperse intermetallic CuAu nanocrystals[J].Angewandte Chemie,2010,122(16):2979-2983. |
35 | FENG Quanchen, ZHAO Shu, HE Dongsheng,et al.Strain engineering to enhance the electrooxidation performance of atomic⁃layer Pt on intermetallic Pt3Ga[J].Journal of the American Chemical Society,2018,140(8):2773-2776. |
36 | SRA A K, EWERS T D, SCHAAK R E.Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks[J].Chemistry of Materials,2005,17(4):758-766. |
37 | CABLE R E, SCHAAK R E.Low⁃temperature solution synthesis of nanocrystalline binary intermetallic compounds using the polyol process[J].Chemistry of Materials,2005,17(26):6835-6841. |
38 | RONG Hongpan, MAO Junjie, XIN Pingyu,et al.Kinetically controlling surface structure to construct defect⁃rich intermetallic nanocrystals:Effective and stable catalysts[J].Advanced Materials,2016,28(13):2540-2546. |
39 | BU Lingzheng, ZHANG Nan, GUO Shaojun,et al.Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J].Science,2016,354(6318):1410-1414. |
40 | SINGH K, TETTEH E B, LEE H Y,et al.Tailor⁃made Pt catalysts with improved oxygen reduction reaction stability/durabili⁃ ty[J].ACS Catalysis,2019,9(9):8622-8645. |
41 | ZHOU Ming, LI Can, FANG Jiye.Noble-metal based random alloy and intermetallic nanocrystals:Syntheses and applications[J].Chemical Reviews,2021,121(2):736-795. |
[1] | LUO Chengling, FAN Xiaofan. Research progress of microstructure-regulated catalysts for urea oxidation reactions [J]. Inorganic Chemicals Industry, 2025, 57(2): 26-35. |
[2] | ZHU Jicheng, YANG Qixin, LIANG Haoquan, WANG Zengkun, OUYANG Fugui, DI Jing, GAI Xikun. Effect of confined catalyst Ni@S2 on performance of methane dry reforming reaction [J]. Inorganic Chemicals Industry, 2025, 57(2): 138-146. |
[3] | LIU Qingcui, LI Yunqing, PANG Ruiqi, TIAN Yaping, CHEN Yiying, LI Fang, LI Qiming. Preparation of Zn/Co-ZIF derived porous carbon supported Pd as catalyst and its application to formic acid dehydrogenation [J]. Inorganic Chemicals Industry, 2024, 56(6): 147-152. |
[4] | LI Jiangpeng, ZHANG Huibin. Synergistic degradation of methylene blue by photo-Fenton and photocatalytic with 3D porous LaFeO3/CeO2/SrTiO3 [J]. Inorganic Chemicals Industry, 2024, 56(5): 141-148. |
[5] | WANG Chao, SONG Guoliang, XIAO Han. Industrial application of THFS-2 sulfurized reforming prehydrogenation catalysts [J]. Inorganic Chemicals Industry, 2024, 56(5): 94-100. |
[6] | JIN Suna, LÜ Ruiliang. Research progress of heterogeneous catalytic ozonation for industrial wastewater treatment [J]. Inorganic Chemicals Industry, 2024, 56(3): 28-38. |
[7] | CHEN Xingliang, FAN Wenjuan, CHANG Hui, HUANG Haiping, JIANG Zhiqiang. Study on collaborative strategy between Fe3+ and Ni-based metal-organic frameworks for boosting electrocatalytic oxygen evolution [J]. Inorganic Chemicals Industry, 2024, 56(2): 152-158. |
[8] | HOU Zhanggui, WU Chongchong, ZHANG Siran. Research progress of CO2 conversion via Reverse Water-Gas Shift reaction [J]. Inorganic Chemicals Industry, 2024, 56(11): 105-115. |
[9] | MA Yihong, CHEN Xingtao, TANG Lei. Treatment of printing wastewater by chemical coagulation-TiO2/g-C3N5 photocatalytic degradation [J]. Inorganic Chemicals Industry, 2024, 56(10): 151-158. |
[10] | JIN Shengshi, LIU Kaijie, LIU Qiuwen, ZHANG Yibo, YANG Xiangguang. Study on catalytic performance of phosphoric acid modified CeO2 nanorod supported Pt catalyst for propane combustion [J]. Inorganic Chemicals Industry, 2024, 56(1): 141-148. |
[11] | GUO Zini, QU Jiyan, LUO Jianhong. Oxidation of NO x by low-temperature plasma using catalysts with different band gaps [J]. Inorganic Chemicals Industry, 2023, 55(9): 126-133. |
[12] | LIU Wei, XU Yan, CHEN Yongsheng, SUN Chunhui, ZHANG Jingcheng, ZHU Jinjian, LIU Yang. Effect of alkaline earth metals on performance of Cu/Al2O3 ester hydrogenation catalyst [J]. Inorganic Chemicals Industry, 2023, 55(9): 140-144. |
[13] | MA Chao, HU Jieqiong, XIE Ming, CHEN Yongtai, ZHANG Qiao, CHEN Song, FANG Jiheng, QIU Leqi. Research progress of preparation of Pt-Au-Ni nanoalloys [J]. Inorganic Chemicals Industry, 2023, 55(9): 26-32. |
[14] | YANG Bo, LIANG Zhiyan, LIU Wenyuan, CAO Jiazhen, LIU Xinyue, XING Mingyang. Research progress of application of molybdenum-based catalytic materials for water pollution control [J]. Inorganic Chemicals Industry, 2023, 55(8): 1-12. |
[15] | MA Zhiyuan, LÜ Dawei, WANG Hui, JIN Nannan, ZHU Jinjian, ZHANG Jingcheng. Industrial application of THDS-2/3 catalyst in capacity expansion of hydrofining plant [J]. Inorganic Chemicals Industry, 2023, 55(8): 140-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297