Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (6): 79-86.doi: 10.19964/j.issn.1006-4990.2021-0226
• Inorganic Noval Materials—Energy Storage and Conversion • Previous Articles Next Articles
Shen Wei(),Wang Sinan,Liang Xuemei,Wei Jinyun,Pan Yujie,Nong Tiantian,Zhou Yan(
),Tan Xuecai,Huang Zaiyin
Received:
2021-03-28
Online:
2021-06-10
Published:
2021-07-08
Contact:
Zhou Yan
E-mail:272889122@qq.com;zhouyan8212@hotmail.com
CLC Number:
Shen Wei,Wang Sinan,Liang Xuemei,Wei Jinyun,Pan Yujie,Nong Tiantian,Zhou Yan,Tan Xuecai,Huang Zaiyin. Research progress of nano MOFs and their derivatives for supercapacitors[J]. Inorganic Chemicals Industry, 2021, 53(6): 79-86.
Table 1
Performance indicators of original MOFs and MOFs derivative electrode materials"
电极材料 | 比电容/ (F·g-1) | 电流密度/ (A·g-1) | 电极材料 | 比电容/ (F·g-1) | 电流密度/ (A·g-1) |
---|---|---|---|---|---|
Co-LMOFs[ | 2 474.00 | 1.0 | Ni/Co-MOFs[ | 1 049.00 | 1.00 |
Co-MOFs[ | 2 564.00 | 1.0 | NiCo-MOFs Nanosheets[ | 1 202.10 | 1.00 |
Cu-CAT Nanowire[ | 202.00 | 0.5 | NiCo-MOFs[ | 1 333.00 | 2.00 |
Cu-DBC[ | 479.00 | 0.2 | Zn-doped Ni-MOFs[ | 1 620.00 | 0.25 |
Ni-MOFs[ | 1 127.00 | 0.5 | NiCo-BDC[ | 1 700.40 | 1.00 |
Ni-MOFs[ | 1 518.80 | 1.0 | CoCuNi-bdc/NF[ | 2 892.00 | 1.00 |
NiCo- MOFs-1[ | 901.60 | 5.0 |
Table 2
Performance indicators of MOFs derivative electrode materials"
电极材料 | 比电容/ (F·g-1) | 电流密度/ (A·g-1) | |
---|---|---|---|
碳材料 | NCP-CNS[ | 300.0 | 1.0 |
NPCN/G[ | 306.4 | 0.2 | |
NGHPCF[ | 326.0 | 0.5 | |
C-S-900[ | 369.0 | 10 mV/s | |
carbon polyhedrons-CNT[ | 381.2 | 5 mV/s | |
金属 氧化物 | Co3O4[ | 1 110.0 | 12.5 |
Co3O4[ | 1 216.4 | 1.0 | |
Co3O4[ | 1 680.0 | 0.5 | |
CuCo2O4[ | 1 700.0 | 2.0 | |
Zn-Co-O@CC[ | 1 750.0 | 1.5 | |
Ni-Co oxide[ | 1 900.0 | 2.0 | |
金属 硫化物 | CoS[ | 1 812.0 | 5 mV/s |
CoS2@CNTs[ | 825.0 | 0.5 | |
Co9S8@C[ | 1 887.0 | 1.0 | |
NiS/rGO[ | 744 C/g | 1.0 | |
Ni/Ni3S2/CNFs[ | 830.0 | 0.2 | |
NiS2@C[ | 833.0 | 0.5 | |
Ni3S4/CNTs[ | 1 489.9 | 1.0 | |
NiCo2S4[ | 1 354.4 C/g | 1.0 | |
NiCo2S4/Co9S8[ | 2 390.2 | 1.0 | |
NiCo-S[ | 3 724.0 | 1.0 | |
Ni3S2@Co9S8/N-HPC[ | 1 970.5 | 0.5 | |
金属 氢氧化物 | NiCo-LDHs[ | 1 272 C/g | 2.0 |
NiCo-LDH/GNR[ | 1 765.0 | 1.0 | |
金属磷化物 | Ni2P/C[ | 1 676.0 | 1.0 |
CoP@Ni2P[ | 2 644.0 | 1.0 |
[1] |
Shao Y, El-Kady M F, Sun J, et al. Design and mechanisms of asy-mmetric supercapacitors[J]. Chemical Reviews, 2018,118(18):9233-9280.
doi: 10.1021/acs.chemrev.8b00252 |
[2] |
Chen X, Paul R, Dai L M, et al. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017,4(3):453-489.
doi: 10.1093/nsr/nwx009 |
[3] |
Trickett C A, Helal A, Al Maythalony B A, et al. The chemistry of metal-organic frameworks for CO2 capture,regeneration and conver-sion[J]. Nature Reviews Materials, 2017,2:17045-17060.
doi: 10.1038/natrevmats.2017.45 |
[4] |
Wei Y S, Zhang M, Zou R Q, et al. Metal-organic framework-based catalysts with single metal sites[J]. Chemical Reviews, 2020,120(21):12089-12174.
doi: 10.1021/acs.chemrev.9b00757 |
[5] |
Zhang Y M, Yuan S, Day G, et al. Luminescent sensors based on me-tal-organic frameworks[J]. Coordination Chemistry Reviews, 2018,354:28-45.
doi: 10.1016/j.ccr.2017.06.007 |
[6] |
Xiao X, Zou L L, Pang H, et al. Synjournal of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications[J]. Chemical Society Reviews, 2020,49(1):301-331.
doi: 10.1039/c7cs00614d pmid: 31832631 |
[7] | Wang L, Han Y Z, Feng X, et al. Metal-organic frameworks for ener-gy storage:Batteries and supercapacitors[J]. Coordination Chem-istry Reviews, 2016,307:361-381. |
[8] | 陈丹, 杨蓉, 张卫华, 等. 有机金属骨架材料在电化学储能领域中的研究进展[J]. 化工进展, 2018,37(2):628-636. |
[9] | 李怡霏, 陈言权, 陈雪珂, 等. 金属有机骨架材料在超级电容器中的应用进展[J]. 上海工程技术大学学报, 2019,33(2):97-101. |
[10] | Liu X, Shi C, Zhai C, et al. A Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode mate-rial[J]. ACS Applied Materials & Interfaces, 2016,8(7):4585-4591. |
[11] |
Yang J, Ma Z, Gao W, et al. Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode[J]. Chemistry-A European Journal, 2017,23(3):631-636.
doi: 10.1002/chem.201604071 |
[12] | Li W H, Ding K, Tian H R, et al. Conductive metal-organic frame-work nanowire array electrodes for high-performance solid-state supercapacitors[J]. Advanced Functional Materials, 2017,27.Doi: 10.1002/adfm.201770165. |
[13] | Liu J, Zhou Y, Xie Z, et al. Conjugated copper-catecholate frame-work electrodes for efficient energy storage[J]. Angewandte Che-mie International Edition, 2020,59(3):1081-1086. |
[14] | Yang J, Xiong P, Zheng C, et al. Metal-organic frameworks:a new promising class of materials for a high performance supercapacitor electrode[J]. Journal of Materials Chemistry A, 2014,39(2):16640-16644. |
[15] | Yang C, Li X, Yu L, et al. A new promising Ni-MOF superstruc-ture for high-performance supercapacitors[J]. Chemical Commu-nications, 2020,56(12):1803-1806. |
[16] |
Chi Y, Yang W, Xing Y, et al. Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage[J]. Nanoscale, 2020,12(19):10685-10692.
doi: 10.1039/D0NR02016H |
[17] | Gholipour-Ranjbar H, Soleimani M, Naderi H R, et al. Application of Ni/Co-based metal-organic frameworks(MOFs) as an advanced electrode material for supercapacitors[J]. New Journal of Chemi-stry, 2016,40(11):9187-9193. |
[18] |
Wang Y, Liu Y, Wang H, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes[J]. ACS Applied Energy Materials, 2019,2(3):2063-2071.
doi: 10.1021/acsaem.8b02128 |
[19] | Liang Y, Yao W, Duan J, et al. Nickel cobalt bimetallic metal-orga-nic frameworks with a layer-and-channel structure for high-per-formance supercapacitors[J]. Journal of Energy Storage, 2021,33. Doi: 10.1016/j.est.2020.102149. |
[20] | Yang J, Zheng C, Xiong P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance[J]. Journal of Materials Che-mistry A, 2014,2(44):19005-19010. |
[21] | Ma H M, Yi J W, Li S, et al. Stable bimetal-MOF ultrathin nano-sheets for pseudocapacitors with enhanced performance[J]. Inor-ganic Chemistry, 2019,58(15):9543-9547. |
[22] |
Mohd Zain N K, Vijayan B L, Misnon I I, et al. Direct growth of triple cation metal-organic framework on a metal substrate for elec-trochemical energy storage[J]. Industrial & Engineering Chemistry Research, 2018,58(2):665-674.
doi: 10.1021/acs.iecr.8b03898 |
[23] | Liang Z, Qu C, Guo W, et al. Pristine metal-organic frameworks and their composites for energy storage and conversion[J], Advanced Materials, 2018,30(37).Doi: 10.1002/adma.201702891. |
[24] | Hou C C, Xu Q. Metal-organic frameworks for energy[J], Advanc-ed Energy Materials, 2018,9(23).Doi: 10.1002/aenm.201801307. |
[25] | Zheng S, Li X, Yan B, et al. Transition-metal(Fe,Co,Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials, 2017,7(18).Doi: 10.1002/aenm.201602733. |
[26] | Zhao Z, Liu S, Zhu J, et al. Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2018,10(23):19871-19880. |
[27] |
Gan Q, Liu S, Zhao K, et al. Graphene supported nitrogen-doped porous carbon nanosheets derived from zeolitic imidazolate frame-work for high performance supercapacitors[J]. RSC Advances, 2016,6(82):78947-78953.
doi: 10.1039/C6RA15776A |
[28] |
Yao Y, Liu P, Li X, et al. Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination or-ganic framework modification and their application in supercapac-itors[J]. Dalton Transactions, 2018,47(21):7316-7326.
doi: 10.1039/C8DT00823J |
[29] |
Cao X M, Sun Z J, Zhao S Y, et al. MOF-derived sponge-like hier-archical porous carbon for flexible all-solid-state supercapacito-rs[J]. Materials Chemistry Frontiers, 2018,2(9):1692-1699.
doi: 10.1039/C8QM00284C |
[30] | Liu Y, Li G, Guo Y, et al. Flexible and binder-free hierarchical po-rous carbon film for supercapacitor electrodes derived from MOFs/CNT[J]. ACS Applied Materials & Interfaces, 2017,9(16):14043-14050. |
[31] |
Zhang Y Z, Wang Y, Xie Y L, et al. Porous hollow Co3O4 with rhom-bic dodecahedral structures for high-performance supercapacito-rs[J]. Nanoscale, 2014,6(23):14354-14359.
doi: 10.1039/C4NR04782F |
[32] | Wei G, Zhou Z, Zhao X, et al. Ultrathin metal-organic framework nanosheet-derived ultrathin Co3O4 nanomeshes with robust oxygen-evolving performance and asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2018,10(28):23721-23730. |
[33] |
Yang J, Wei F, Sui Y, et al. Co3O4 nanocrystals derived from a ze-olitic imidazolate framework on Ni foam as high-performance su-percapacitor electrode material[J]. RSC Advances, 2016,6(66):61803-61808.
doi: 10.1039/C6RA11272B |
[34] |
Ensafi A A, Moosavifard S E, Rezaei B, et al. Engineering onion-like nanoporous CuCo2O4 hollow spherees derived from bimetal-organic frameworks for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018,6(22):10497-10506.
doi: 10.1039/C8TA02819B |
[35] |
Javed M S, Shaheen N, Hussain S, et al. An ultra-high energy den-sity flexible asymmetric supercapacitor based on hierarchical fab-ric decorated with 2D bimetallic oxide nanosheets and MOF-deri-ved porous carbon polyhedral[J]. Journal of Materials Chemistry A, 2019,7(3):946-957.
doi: 10.1039/C8TA08816K |
[36] | Guan B Y, Kushima A, Yu L, et al. Coordination polymers derived general synjournal of multishelled mixed metal-oxide particles for hybrid supercapacitors[J], Advanced Materials, 2017,29(17). Doi: 10.1002/adma.201605902. |
[37] |
Jiang Z, Lu W, Li Z, et al. Synjournal of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014,2(23):8603-8606.
doi: 10.1039/C3TA14430E |
[38] |
Zou K Y, Liu Y C, Jiang Y F, et al. Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-derived CoS 2@CNTs with tun-able pore diameters for supercapacitors[J]. Inorganic Chemistry, 2017,56(11):6184-6196.
doi: 10.1021/acs.inorgchem.7b00200 |
[39] | Sun S, Luo J, Qian Y, et al. Metal-organic framework derived hon-eycomb Co9S8@C composites for high-performance supercapacito-rs[J]. Advanced Energy Materials, 2018,8(25).Doi: 10.1002/aenm.201801080. |
[40] |
Qu C, Zhang L, Meng W, et al. MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacito-rs[J]. Journal of Materials Chemistry A, 2018,6(9):4003-4012.
doi: 10.1039/C7TA11100B |
[41] |
Tian D, Chen S, Zhu W, et al. Metal-organic framework derived hierarchical Ni/Ni3S2 decorated carbon nanofibers for high-perfor-mance supercapacitors[J]. Materials Chemistry Frontiers, 2019,3(8):1653-1660.
doi: 10.1039/C9QM00296K |
[42] |
Li Z X, Yang B L, Jiang Y F, et al. Metal-directed assembly of five 4-connected MOFs:One-pot syntheses of MOF-derived MxSy@C composites for photocatalytic degradation and supercapacitors[J]. Crystal Growth & Design, 2018,18(2):979-992.
doi: 10.1021/acs.cgd.7b01463 |
[43] |
Yang Y, Li M L, Lin J N, et al. MOF-derived Ni3S4 encapsulated in 3D conductive network for high-performance supercapacitor[J]. Inorganic Chemistry, 2020,59(4):2406-2412.
doi: 10.1021/acs.inorgchem.9b03263 pmid: 32030979 |
[44] | Ouyang Y, Zhang B, Wang C, et al. Bimetallic metal-organic frame-work derived porous NiCo2S4 nanosheets arrays as binder-free elec-trode for hybrid supercapacitor[J]. Applied Surface Science, 2021,542.Doi: 10.1016/j.apsusc.2020.148621. |
[45] |
Liu Y, Ma Z, Niu H, et al. MOF-derived Co9S8 polyhedrons on NiCo2S4 nanowires for high-performance hybrid supercapacitors[J]. Inorganic Chemistry Frontiers, 2020,7(21):4092-4100.
doi: 10.1039/D0QI00651C |
[46] |
Zheng L, Song J, Ye X, et al. Construction of self-supported hier-archical NiCo-S nanosheet arrays for supercapacitors with ultra-high specific capacitance[J]. Nanoscale, 2020,12(25):13811-13821.
doi: 10.1039/D0NR02976A |
[47] |
Wang S F, Xiao Z Y, Zhai S R, et al. Construction of strawberry-like Ni3S2@Co9S8 heteronanoparticle-embedded biomass-derived 3D N-doped hierarchical porous carbon for ultrahigh energy den-sity supercapacitors[J]. Journal of Materials Chemistry A, 2019,7(29):17345-17356.
doi: 10.1039/C9TA05145G |
[48] |
Ramachandran R, Lan Y, Xu Z X, et al. Construction of NiCo-lay-ered double hydroxide microspheres from Ni-MOFs for high-per-formance asymmetric supercapacitors[J]. ACS Applied Energy Materials, 2020,3(7):6633-6643.
doi: 10.1021/acsaem.0c00790 |
[49] |
Jin H, Yuan D, Zhu S, et al. Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors[J]. Dalton Transactions, 2018,47(26):8706-8715.
doi: 10.1039/C8DT01882K |
[50] |
Liu S, Xu Y, Wang C, et al. Metal-organic framework derived Ni2P/C hollow microspheres as battery-type electrodes for battery-supercapacitor hybrids[J]. ChemElectroChem, 2019,6(21):5511-5518.
doi: 10.1002/celc.v6.21 |
[51] |
Jiang L, Yan M, Sun L, et al. Hierarchical CoP@Ni2P core-shell nanosheets for ultrahigh energy density asymmetric supercapaci-tors[J]. Inorganic Chemistry Frontiers, 2020,7(16):3030-3038.
doi: 10.1039/D0QI00024H |
[52] |
Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for me-tal-organic framework-derived nanoporous carbons toward super-capacitor applications[J]. Accounts of Chemical Research, 2016,49(12):2796-2806.
pmid: 27993000 |
[53] | 李璐, 高长青, 刘怡琳, 等. 氮杂化介孔碳制备方法及在超级电容器中的应用进展[J]. 无机盐工业, 2021,53(3):24-29. |
[54] |
Salunkhe R R, Kaneti Y V, Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applica-tions:Progress and prospects[J]. ACS Nano, 2017,11(6):5293-5308.
doi: 10.1021/acsnano.7b02796 pmid: 28613076 |
[1] | ZHANG Feigang, LIU Zhongli. Study on application of CuO/g-C3N4 composites in organic dye degradation and supercapacitors [J]. Inorganic Chemicals Industry, 2025, 57(1): 129-136. |
[2] | WU Qingqing, XU Xuetang, WANG Fan. Study on capacitor performance of high⁃mass⁃loading ZnCo-based carbonate hydroxide electrode materials [J]. Inorganic Chemicals Industry, 2024, 56(7): 46-54. |
[3] | WANG Jianfang, YANG Heping, LI Kaibin, CONG Shiqiang, ZHANG Bojie, GUO Shan. Study on preparation of C3N4/MnCo2S4 composites and their capacitive properties [J]. Inorganic Chemicals Industry, 2023, 55(7): 70-74. |
[4] | XU Xuetang, WANG Xukai, ZHANG Shenhe, HUANG Meixiang, NONG Shuliu, XU Nuo. Study on preparation and properties of vanadate doped NiCo-LDH electrode [J]. Inorganic Chemicals Industry, 2023, 55(5): 52-58. |
[5] | JIANG Tiantian,XU Xuetang,WANG Fan. Research on growth and supercapacitance of NiCo based electrode materials regulated by halogen ions [J]. Inorganic Chemicals Industry, 2022, 54(8): 66-73. |
[6] | Zhang Tianliang,Li Jun,Xiong Wei,Zhang Haiyan,Tao Xiaoqiu. Study on one-step preparation of activated carbon with high specific surface by K2CO3 activation and its capacitance performance [J]. Inorganic Chemicals Industry, 2022, 54(4): 159-164. |
[7] | WANG Dian,SU Qiong,PANG Shaofeng,CAO Shijun,KANG Lihui,LIANG Lichun,WANG Yanbin,LI Zhaoxia. Study on high-performance supercapacitors based on Fe2O3/biomass carbon composites [J]. Inorganic Chemicals Industry, 2022, 54(3): 59-65. |
[8] | ZHAO Zhichao,WANG Honglin,WANG Xia,SUN Gang,ZHAO Cuilian,SUN Nannan. Controllable preparation of NiMoO4 nanosheets-based microspheres by hydrothermal method and their supercapacitor properties [J]. Inorganic Chemicals Industry, 2022, 54(2): 60-64. |
[9] | LIANG Qunfang,XU Xuetang,WANG Fan. Study on improvement of capacitance performance of NiMn-LDH electrode material by anions exchange [J]. Inorganic Chemicals Industry, 2022, 54(2): 38-44. |
[10] | YI Jinliang,YANG Min,SONG Fangxiang,CHEN Qianlin. Study on preparation and electrochemical properties of agaric carbon-based cobalt sulfide composites [J]. Inorganic Chemicals Industry, 2022, 54(12): 60-67. |
[11] | Wang Yuexiang,Shao Lanyan,Xu Tiannan,Cai Caihong,Yuan Junsheng,Zhang Yingwu. Study on existing speciation and deep dechlorination of chlorine in waste incineration fly ash [J]. Inorganic Chemicals Industry, 2021, 53(5): 78-83. |
[12] | Zhang Hao,Wang Liyan,Li Yingqi,Xiao Shanshan,Bi Fei,Zhao Li. Nano-flowered ZnCo LDHs electrode material grown in situ on nickel foam and its electrochemical properties [J]. Inorganic Chemicals Industry, 2021, 53(5): 61-65. |
[13] | Zhang Shuojia,Yang Yubin,Tang Yu,Chi Liping,Xu Bing. Synthesis and electrochemical properties of high?鄄activity Fe2O3@Ni composite electrode [J]. Inorganic Chemicals Industry, 2019, 51(7): 24-27. |
[14] | Zhao Yu,Zhang Shuojia,Xu Bing,Yu Yue,Sun Xiaohui. Fabrication and electrochemical properties of Zn-based electrode materials [J]. Inorganic Chemicals Industry, 2019, 51(6): 21-24. |
[15] | Luo Xiqing,Wang Tongzhen,Jiang Miaomiao,Xiong Fan,Cheng Fengru. Study on preparation of NiS2/Ni(OH)2 hollow spheres and its capacitor performance [J]. Inorganic Chemicals Industry, 2019, 51(12): 35-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297