Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (2): 30-37.doi: 10.19964/j.issn.1006-4990.2021-0181
• Reviews and Special Topics • Previous Articles Next Articles
Received:
2021-03-24
Online:
2022-02-10
Published:
2022-03-14
CLC Number:
YAN Chen,LIU Hantao. Research progress on two-dimensional nanosheet-based composite phase change materials for thermal energy storage[J]. Inorganic Chemicals Industry, 2022, 54(2): 30-37.
Table 1
Modified properties of carbon-based composite PCMs"
相变材料 | 添加剂 | 负载量 (质量分数)/% | 热导率/ (W·m-1·K-1) | 过冷度/ ℃ | 相变潜热/ (J·g-1) |
---|---|---|---|---|---|
石蜡[ | 石墨烯 | 20 | 7.25 | — | — |
正二十二烷[ | 石墨烯 | — | 0.59 | — | 256.1→262.2 |
Mg(NO3)2·6H2O[ | 石墨烯 | 3 | 0.99 | 30 →2.2 | — |
聚乙二醇[ | 氧化石墨烯 | 4 | — | — | 157.9→142.8 |
石蜡[ | 氧化石墨烯 | 51.7 | 0.985 | — | — |
CaCl2·6H2O[ | 氧化石墨烯/SrCl2·6H2O | — | — | 25.4 → 0.3 | 191→207.88 |
Solar Salt[ | 膨胀石墨烯 | 15 | 50.78 | — | 104.2→89.0 |
水合盐[ | 膨胀石墨烯 | 13 | 3.643 | 27.66→14.94 | — |
乙酰胺[ | 膨胀石墨烯 | 10 | 2.61 | 24.49→0.39 | 194.92→163.71 |
硬脂酸[ | 膨胀石墨烯 | 25 | 23.27 | 1.73→1.03 | — |
Table 2
Modified properties of hexagonal boron nitride-based composite PCMs"
相变材料 | 添加剂 | 负载量/ % | 热导率/ (W·m-1·K-1) | 相变潜热/ (J·g-1) |
---|---|---|---|---|
环氧树脂[ | 六方氮化硼 | 5 (质量分数) | 0.32 | — |
石蜡[ | 六方氮化硼 | 10 (质量分数) | 0.53 | 199.77→177 |
硅氧烷橡胶[ | 六方氮化硼 | 40 (体积分数) | 1.110 | — |
CaCl2·6H2O[ | 六方氮化硼 | 0.5 (质量分数) | 1.867 | 129.31→114.90 |
环氧树脂[ | 修饰六方氮 化硼 | 15 (质量分数) | 1.198 | — |
聚酰亚胺[ | 修饰六方氮 化硼 | 30 (质量分数) | 0.71 | — |
聚硅氧烷[ | 修饰六方氮 化硼 | 5 (体积分数) | 1.72 | — |
[1] | MENG L R, GUO L J, LI X Y, et al. Salt hydrate based phase change materials for thermal energy storage-A review[J]. Energy Storage Science and Technology, 2017, 6(4):623-632. |
[2] | 张贺磊, 方贤德, 赵颖杰. 相变储热材料及技术的研究进展[J]. 材料导报, 2014, 28(13):26-32. |
[3] | 李秋玫, 季旭, 兰青, 等. 无机水合盐相变储热材料的过冷及导热性能研究进展[J]. 云南师范大学学报:自然科学版, 2021, 41(1):19-24. |
[4] |
MINNICH A J. Advances in the measurement and computation of thermal phonon transport properties[J]. Journal of Physics:Conden-sed Matter, 2015, 27.Doi: 10.1088/0953-8984/27/5/053202.
doi: 10.1088/0953-8984/27/5/053202 |
[5] |
FRANKLIN A, KNOX E. Emergence without limits:The case of pho-nons[J]. Studies in History and Philosophy of Modern Physics, 2018, 64:68-78.
doi: 10.1016/j.shpsb.2018.06.001 |
[6] |
ZENG J L, CAO Z, YANG D W, et al. Thermal conductivity enhan-cement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1):385-389.
doi: 10.1007/s10973-009-0472-y |
[7] |
WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhance-ment on phase change materials for thermal energy storage:A revi-ew[J]. Energy Storage Materials, 2020, 25:251-295.
doi: 10.1016/j.ensm.2019.10.010 |
[8] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896 |
[9] |
WARZOHA R J, FLEISCHER A S. Improved heat recovery from pa- raffin-based phase change materials due to the presence of percola-ting graphene networks[J]. International Journal of Heat and Mass Transfer, 2014, 79:314-323.
doi: 10.1016/j.ijheatmasstransfer.2014.08.009 |
[10] | LI J F, LU W, ZENG Y B, et al. Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene[J]. Solar Energy Ma-terials and Solar Cells, 2014, 128:48-51. |
[11] |
PAVLA H, GALINA S, JANA P, et al. Improvement of thermal en-ergy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahy-drate[J]. Renewable Energy, 2021, 168:1015-1026.
doi: 10.1016/j.renene.2020.12.115 |
[12] | QI G Q, LIANG C L, BAO R Y, et al. Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide[J]. Solar Energy Materi-als and Solar Cells, 2014, 123:171-177. |
[13] | MEHRALI M, LATIBARI S T, MEHRALI M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite[J]. Energy Conversion and Ma-nagement, 2013, 67:275-282. |
[14] |
JIN Z Y, TIAN Y Y, XU X X, et al. Experimental investigation on graphene oxide/SrCl2·6H2O modified CaCl2·6H2O and the resulting thermal performances[J]. Materials, 2018, 11(9).Doi: 10.3390/ma11091507.
doi: 10.3390/ma11091507 |
[15] |
ZHAO Y J, WANG R Z, WANG L W, et al. Development of highly conductive KNO3/NaNO3 composite for TES(thermal energy stor-age)[J]. Energy, 2014, 70:272-277.
doi: 10.1016/j.energy.2014.03.127 |
[16] | WU Y P, WANG T. Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage[J]Energy Conversion and Ma-nagement, 2015, 101:164-171. |
[17] |
XIA L, ZHANG P. Thermal property measurement and heat trans-fer analysis of acetamide and acetamide/expanded graphite compo-site phase change material for solar heat storage[J]Solar Energy Materials and Solar Cells, 2011, 95(8):2246-2254.
doi: 10.1016/j.solmat.2011.03.031 |
[18] |
WU S, LI T X, YAN T, et al. High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2016, 102:733-744.
doi: 10.1016/j.ijheatmasstransfer.2016.06.066 |
[19] |
LIN Z Y, MCNAMARA A, LIU Y, et al. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal con-ductivity for electronic encapsulation[J]. Composites Science and Technology, 2014, 90:123-128.
doi: 10.1016/j.compscitech.2013.10.018 |
[20] |
FANG X, FAN L W, DING Q, et al. Thermal energy storage perfor-mance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets[J]. Energy Conversion and Management, 2014, 80:103-109.
doi: 10.1016/j.enconman.2014.01.016 |
[21] |
GU J W, MENG X D, TANG Y S, et al. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities[J]. Composites Part A- Applied Science and Manufacturing, 2017, 92:27-32.
doi: 10.1016/j.compositesa.2016.11.002 |
[22] |
BARHEMMATI-RAJAB N, ZHAO W H. Investigation into boron nitride nanoparticle effects on thermal properties of calcium chlo-ride hexahydrate (CaCl2·6H2O) as a phase change material[J]. MRS Communications, 2018, 8(4):1439-1444.
doi: 10.1557/mrc.2018.210 |
[23] |
JIANG Y L, SHI X J, FENG Y Z, et al. Enhanced thermal conduc-tivity and ideal dielectric properties of epoxy composites contain-ing polymer modifıed hexagonal boron nitride[J]. Composites Part A, 2018, 107:657-664.
doi: 10.1016/j.compositesa.2018.02.016 |
[24] |
GUO Y Q, LYU Z Y, YANG X T, et al. Enhanced thermal conduc-tivities and decreased thermal resistances of functionalized boron nitride/polyimide composites[J]. Composites Part B-Engineering, 2019, 164:732-739.
doi: 10.1016/j.compositesb.2019.01.099 |
[25] |
CHO H, TOKOI Y, TANAKA S, et al. Modification of BN nano-sheets and their thermal conducting properties in nanocomposite-fılm with polysiloxane according to the orientation of BN[J]. Composites Science and Technology, 2011, 71:1046-1052.
doi: 10.1016/j.compscitech.2011.03.002 |
[26] | MA X Y, WU S Y, YI Z M, et al. The effect mechanism of functio-nalization on thermal conductivity of boron nitride nanosheets/paraffin composites[J]. International Journal of Heat and Mass Tra-nsfer, 2019, 137:790-798. |
[27] | MADATHIL P K, BALAGI N, SAHA P, et al. Preparation and characterization of molten salt based nanothermic fluids with en-hanced thermal properties for solar thermal applications[J]. App-lied Thermal Engineering, 2016, 109:901-905. |
[28] |
DU X S, QIU J H, DENG S, et al. Ti3C2Tx@PDA-integrated polyu-rethane phase change composites with superior solar-thermal con-version efficiency and improved thermal conductivity[J]. ACS Sustainable Chemistry and Engineering, 2020, 8:5799-5806.
doi: 10.1021/acssuschemeng.0c01582 |
[29] |
SHENG X X, DONG D X, LU X, et al. MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change ma-terial with enhanced light-to-thermal conversion efficiency,ther-mal energy storage capability and thermal conductivity[J]. Compo-sites Part A, 2020, 138.Doi: 10.1016/j.compositesa.2020.106067.
doi: 10.1016/j.compositesa.2020.106067 |
[30] |
CUI H, LIAO W, MI X, et al. Study on functional and mechanical properties of cement mortar with graphite-modified microencapsu-lated phase-change materials[J]. Energy Build, 2015, 105:273-284.
doi: 10.1016/j.enbuild.2015.07.043 |
[31] |
HE Y, ZHANG X, ZHAN Y J, et al. Utilization of lauric acid-myri-stic acid/expanded graphite phase change materials to improve ther-mal properties of cement mortar[J]. Energy and Buildings, 2016, 133:547-558.
doi: 10.1016/j.enbuild.2016.10.016 |
[32] |
WANG X, YU H, LI L, et al. Experimental assessment on a kind of composite wall incorporated with shape-stabilized phase change materials(SSPCMs)[J]. Energy and Buildings, 2016, 128:567-574.
doi: 10.1016/j.enbuild.2016.07.031 |
[33] |
LING Z Y, WEN X Y, ZHANG Z G, et al. Thermal management performance of phase change materials with different thermal con-ductivities for Li-ion battery packs operated at low temperatures[J]. Energy, 2018, 144:977-983.
doi: 10.1016/j.energy.2017.12.098 |
[34] |
JIANG G W, HUANG J H, FU Y S, et al. Thermal optimization of composite phase change material/expanded graphite for Li-ion ba-ttery thermal management[J]. Applied Thermal Engineering, 2016, 108:1119-1125.
doi: 10.1016/j.applthermaleng.2016.07.197 |
[35] | LIN C, XU S, CHANG G, et al. Experiment and simulation of a LiFePO4,battery pack with a passive thermal management system using composite phase change material and graphite sheets[J]. Jo-urnal of Power Sources, 2015, 275:742-749. |
[36] |
SUN L L, XIANG N, YUAN Y P, et al. Experimental investigation on performance comparison of solar water heating-phase change material system and solar water heating system[J]. Energies, 2019, 12(12).Doi: 10.3390/en12122347.
doi: 10.3390/en12122347 |
[37] |
XIAO Q Q, CAP J H, ZHANG Y X, et al. The application of solar-to-thermal conversion phase change material in novel solar water heating system[J]. Solar Energy, 2020, 199:484-490.
doi: 10.1016/j.solener.2020.02.054 |
[1] | WANG Chen, HE Wei, SUN Mengyuan. Research on preparation of nano-bismuth oxide-enhanced chloride/magnesium oxide composites and their thermophysical properties [J]. Inorganic Chemicals Industry, 2024, 56(12): 120-126. |
[2] | HE Haodong,YANG Lin,CAO Jianxin. Preparation of high temperature composite phase change energy storage materials by yellow phosphorus slag and Na2SO4-NaCl [J]. Inorganic Chemicals Industry, 2023, 55(2): 126-131. |
[3] | GUO Jianye, WANG Dong, SU Lijun, LI Wenjing. Effect of aerogel doping on thermal insulation performance of glass fiber felt [J]. Inorganic Chemicals Industry, 2023, 55(11): 53-57. |
[4] | YUAN Ziou, WANG Feng, QI Xingzhao, ZHANG Qi, MA Jianlong, TANG Zhongfeng. Thermal properties of sodium chloride-sodium sulfate/silicon-based phase change composites [J]. Inorganic Chemicals Industry, 2023, 55(10): 114-120. |
[5] | CHEN Mingsheng,LIU Peng,KONG Dewen,LI Yuan,YU Ke,HUANG Yansen,WU Ningbo,CHANG Juanjuan. Effect of external admixtures on mechanical and thermal conductivity of phosphogypsum composite cementitious materials [J]. Inorganic Chemicals Industry, 2022, 54(9): 113-118. |
[6] | ZHANG Yue,WANG Min,LI Jinli,ZHAO Youjing,WANG Huaiyou. Study on thermophysical properties of solar salt composites doped with nanoparticles [J]. Inorganic Chemicals Industry, 2022, 54(5): 54-60. |
[7] | LI Zirui,XING Dongxian,TANG Jianwei,WANG Baoming,HUA Quanxian,LIU Li,LIU Yong. Study on preparation and heat storage performance of phosphogypsum-based composite phase change materials [J]. Inorganic Chemicals Industry, 2022, 54(4): 34-39. |
[8] | Feng Xiaoping,Hao Xuejun. Experimental study on enhanced heat transfer performance of ternary mixed molten salts [J]. Inorganic Chemicals Industry, 2021, 53(8): 66-70. |
[9] | Liu Yonghe,Zhang Yanyan. Effect of modification process of thermal conductive alumina on thermal conductivity of interfacial materials [J]. Inorganic Chemicals Industry, 2020, 52(9): 70-72. |
[10] | Yan Quanying,Liu Chao. Study on the preparation and thermal properties of binary mixed chloride salts [J]. Inorganic Chemicals Industry, 2019, 51(6): 25-28. |
[11] | ZHAO Qian, WANG Jun-Bo, SONG Yu-Kuan, WANG Rui-Juan, AN Zhao-Peng, LIU Jiangnan. Research progress in high heat storage material of molten salt [J]. INORGANICCHEMICALSINDUSTRY, 2014, 46(11): 5-. |
[12] | Zhang Tao;Zeng Liang;Zhang Dong. Improvement of thermal properties of hybrid inorganic salt phase change materials by expanded graphite and graphene [J]. INORGANICCHEMICALSINDUSTRY, 2010, 0(5): 0-0. |
[13] | Chen Yao;Feng Zhaolong;Huang Xianghua;Yu Xinwei;Zheng Wenzhi;Ren Zhijun. Progress in nano-sized silica gel-thermal insulation material [J]. INORGANICCHEMICALSINDUSTRY, 2010, 0(11): 0-0. |
[14] | Peng Qiang;Wei Xiaolan;Ding Jing;Yang Jianping;Yang Xiaoxi. Calculation of thermal conductivity coefficient of ternary nitrate salt [J]. INORGANICCHEMICALSINDUSTRY, 2009, 0(2): 0-0. |
[15] | Liao Min;Ding Jing;Wei Xiaolan;Yang Xiaoxi;Yang Jianping. Preparation and heat transfer and thermal storage property of high-temperature carbonate molten salt [J]. INORGANICCHEMICALSINDUSTRY, 2008, 0(10): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297