无机盐工业 ›› 2025, Vol. 57 ›› Issue (11): 1-9.doi: 10.19964/j.issn.1006-4990.2025-0040
• 综述与专论 • 下一篇
武洁1,2(
), 武泽文2,3, 王峰2(
), 张琦2,3, 唐忠锋3(
)
收稿日期:2025-01-20
出版日期:2025-11-10
发布日期:2025-08-12
通讯作者:
王峰(1981- ),女,博士,教授,主要研究方向为碳捕集技术、熔盐储热;E-mail:wangfeng@imut.com。作者简介:武洁(1986— ),女,博士研究生,高级工程师,主要研究方向为能源与环境保护;E-mail:wujiegongda@126.com。
基金资助:
WU Jie1,2(
), WU Zewen2,3, WANG Feng2(
), ZHANG Qi2,3, TANG Zhongfeng3(
)
Received:2025-01-20
Published:2025-11-10
Online:2025-08-12
摘要:
利用工业固废电石渣制备CO2吸附剂具有成本低廉、工艺简单、吸附性能佳等优点;但电石渣高温下易板结,显著降低了其对CO2循环吸脱附性能。因此,抑制电石渣在高温下的板结和提高其循环吸脱附性能极具挑战。综述了Al2O3、MgO等金属氧化物的固相无序掺杂、生物质模板法掺杂、有机酸液相掺杂、水蒸气再活化和无机酸再活化等对电石渣的改性效果,探讨了掺杂改性后电石渣微观结构变化对CO2吸脱附性能的影响,揭示不同方法改性后电石渣对CO2吸脱附性能的影响机制。结果表明,采用固相无序掺杂金属氧化物作为金属骨架能有效改善吸附剂的孔隙结构及抗烧结能力,其中钙铝酸盐和MgO的改性效果最佳。采用水蒸气再活化电石渣可以有效重构吸附剂内部坍塌的孔隙结构。未来的研究应聚焦于多种改性手段的协同作用,结合水蒸气再活化技术,进一步提升循环过程能效,为电石渣基CO2吸附剂的性能提升和工业化推广应用提供理论依据,具有重要的学术价值和实际应用前景。
中图分类号:
武洁, 武泽文, 王峰, 张琦, 唐忠锋. 电石渣改性制备CO2吸附剂的研究进展[J]. 无机盐工业, 2025, 57(11): 1-9.
WU Jie, WU Zewen, WANG Feng, ZHANG Qi, TANG Zhongfeng. Research progress on modification and preparation of carbide slag based CO2 adsorbents[J]. Inorganic Chemicals Industry, 2025, 57(11): 1-9.
表1
掺杂Al2O3前驱体的电石渣基CO2吸附剂性能
| 原料 | 最佳配比 | 合成方法 | 碳酸化条件 | 循环性能 |
|---|---|---|---|---|
电石渣、Al(NO3)3、 甘油水溶液[ | m(CaO)∶m(Al2O3)=90∶10 | 燃烧合成法 | 680 ℃,纯CO2,<5 min | 50次循环后最大 吸附容量为0.38 g/g |
电石渣、Al(NO3)3、 柠檬酸[ | m(CaO)∶m(Al2O3)=90∶10 | 有机酸同步铝掺杂法 | 650 ℃,15%(体积分数,下同) CO2/N2,45 min | 30次循环后最大 吸附容量为0.33 g/g |
电石渣、高铝水泥、 生物柴油副产物[ | m(CaO)∶m(Al2O3)=95∶5 | 燃烧合成法 | 700 ℃,15%CO2/N2,20 min | 10次循环后最大 吸附容量为0.62 g/g |
电石渣、高铝水泥、 生物柴油副产物[ | m(CaO)∶m(Al2O3)=90∶10 | 燃烧合成法 | 碳酸化:700 ℃,15%CO2/N2,20 min | 30次循环后最大 吸附容量为0.27 g/g |
电石渣、纳米Al2O3、 琼脂、硅胶模具[ | n(CaO)∶n(Al2O3)=100∶10 | 琼脂-硅模法 | 660 ℃,纯CO2,20 min | 15次循环后最大 吸附容量为0.50 g/g |
表2
掺杂MgO前驱体的电石渣基CO2吸附剂性能
| 原料 | 最佳配比 | 合成方法 | 碳酸化条件 | 循环性能 |
|---|---|---|---|---|
电石渣、Mg(NO3)2‧6H2O、 生物柴油燃烧副产物[ | m(CaO)∶m(MgO)=80∶20 | 燃烧合成法 | 700 ℃,15%CO2/40% 水蒸气/N2,20 min | 20次循环后最大 吸附容量为0.42 g/g |
电石渣、Mg(NO3)2‧6H2O、 甘油[ | m(CaO)∶m(MgO)=80∶20 | 燃烧合成法 | 700 ℃,15%CO2/N2,20 min | 10次循环后碳酸化 转化率为0.77 |
| 电石渣、MgCO3[ | n(CaO)∶n(MgO)=70∶30 | 机械混合法 | 750 ℃,33%CO2/N2,30 min | 10次循环后碳酸化 转化率为0.61 |
电石渣、Mg(NO3)2‧6H2O、 柠檬酸[ | n(CaO)∶n(MgO)=70∶30 | 溶胶-凝胶法、燃烧合成法 | 750 ℃,33%CO2/N2,30 min | 10次循环后碳酸化 转化率为0.89 |
| 电石渣、白云石[ | m(CaO)∶m(MgO)=90∶10 | 燃烧合成法 | 700 ℃,15%CO2/N2,20 min | 20次循环后最大 吸附容量为0.52 g/g |
表3
掺杂多元金属氧化物的电石渣基CO2吸附剂性能比较
| 原料 | 最佳配比 | 合成方法 | 碳酸化条件 | 循环性能 |
|---|---|---|---|---|
| 电石渣、白云石、Mn(NO3)2‧4H2O、生物柴油燃烧副产物[ | n(CaO)∶n(MgO)∶n(MnO2)=89∶10∶1 | 燃烧合成法 | 700 ℃,15%CO2/20% 水蒸气/N2,20 min | 10次循环后最大 吸附容量为0.52 g/g |
电石渣、MgO、NiO、 柠檬酸[ | m(CaO)∶m(MgO)∶m(NiO)=75∶15∶10 | 液相沉淀法 | 650 ℃,30%CO2/N2, 25 min | 20次循环后最大 吸附容量为0.25 g/g |
电石渣、MgO、ZrO2、 柠檬酸[ | m(CaO)∶m(MgO)∶m(ZrO2)=75∶15∶10 | 液相沉淀法 | 650 ℃,30%CO2/N2, 25 min | 20次循环后最大 吸附容量为0.24 g/g |
| 电石渣、MgO、ZnO[ | m(CaO)∶m(MgO)∶m(ZnO)=85∶10∶5 | 物理混合法 | 650 ℃,纯CO2, 40 min | 20次循环后最大 吸附容量为0.42 g/g |
电石渣、MnC4H6O4·4H2O、 Ce(NO3)3·6H2O、柠檬酸[ | m(Ca)∶m(Mn)∶m(Ce)=100∶5∶2.5 | 湿混合法 | 850 ℃,纯CO2, 10 min | 30次循环后最大 吸附容量为0.52 g/g |
表4
不同模板法改性的电石渣基吸附剂的CO2吸附性能
| 原料 | 合成方法 | 碳酸化条件 | 循环性能 |
|---|---|---|---|
电石渣、氧化铝 水泥、葡萄糖[ | 碳微球 模板法 | 700 ℃,15%CO2/ N2,20 min | 20次循环后最大吸附容量为0.37 g/g |
电石渣、纸纤维、 Al(NO3)3·9H2O[ | 纸模板法 | 700 ℃,15%CO2/ N2,30 min | 30次循环后最大吸附容量为0.56 g/g |
玉米芯粉、 电石渣[ | 琼脂法 | 650 ℃,CO2, 20 min | 15次循环后最大吸附容量为0.336 g/g |
电石渣、 Al2O3[ | 水热 模板法 | 700 ℃,10%H2O/ 15%CO2/N2,20 min | 30次循环后最大吸附容量为0.29 g/g |
电石渣、生物 柴油副产物[ | 燃烧 合成法 | 700 ℃,15%CO2/ N2,20 min | 20次循环后碳酸化转化率为0.58 |
表5
不同酸改性电石渣基吸附剂CO2吸附性能比较
| 原料 | 最佳配比 | CO2吸附条件 | 循环性能及固碳性能 |
|---|---|---|---|
| 电石渣、丙酸[ | n(电石渣)∶n(丙酸)=1∶4 | 700 ℃,15%CO2/N2,20 min | 20次循环后碳酸转化率为0.51 |
| 电石渣、乙酸[ | n(Ca2+)∶n(H+)=1∶3 | 650 ℃,15%CO2/N2,30 min | 15次循环后最大吸附容量为0.25 g/g |
| 电石渣、柠檬酸[ | n(Ca2+)∶n(H+)=1∶3 | 650 ℃,15%CO2/N2,30 min | 15次循环后最大吸附容量为0.20 g/g |
| 电石渣、草酸[ | n(Ca2+)∶n(H+)=1∶3 | 650 ℃,15%CO2/N2,30 min | 15次循环后最大吸附容量为0.20 g/g |
| 电石渣、甲酸[ | n(Ca2+)∶n(H+)=1∶3 | 650 ℃,15%CO2/N2,30 min | 15次循环后最大吸附容量为0.13 g/g |
电石渣、钢渣、乙酸 (0.5 mol/L)[ | m[固体(电石渣20%)]∶m(液体)=1∶10 | 最大固碳量为0.264 g/g | |
电石渣、钢渣、盐酸 (0.5 mol/L)[ | m[固体(电石渣20%)]∶m(液体)=1∶10 | 最大固碳量为0.169 g/g | |
电石渣、钢渣、乳酸 (0.5 mol/L)[ | m[固体(电石渣20%)]∶m(液体)=1∶10 | 最大固碳量为0.251 g/g | |
| 电石渣、柠檬酸[ | n(电石渣)∶n(柠檬酸)=1∶1 | 650 ℃,15%CO2/N2,45 min | 10次循环后最大吸附容量为0.32 g/g |
表6
水合作用改性电石渣基吸附剂CO2吸附性能比较
| 原料 | CO2吸附条件 | 水合与脱水条件 | 循环性能及固碳性能 |
|---|---|---|---|
| 电石渣[ | 650 ℃,20%H2O/15%CO2/N2,20 min | 20次循环后碳酸化转化率为0.37 | |
| 电石渣[ | 650 ℃,40%H2O/20%CO2/N2,5 min (第1次和第10次循环20 min) | 20次循环后碳酸化转化率为0.35 | |
| 电石渣[ | 650 ℃,60%H2O/20%CO2/N2,5 min | 20次循环后碳酸化转化率为0.31 | |
| 电石渣、菱镁矿[ | 650 ℃,20%H2O/12%CO2/15%O2/N2,5 min | 20次循环后碳酸化转化率为0.231 | |
电石渣、 生物柴油副产物[ | 700 ℃,15%CO2,85%N2,20 min | 水合:400 ℃,95%H2O/空气, 5 min;脱水:550 ℃,空气,10 min | 20次循环后碳酸化转化率为0.81 |
| 电石渣[ | 5 ℃,CO2初始压力1.5 MPa,液固体积质量比(mL/g)为15 | 初次循环后碳酸化转化率为0.620 4 | |
| [1] | 赵雯涵,吴水木,李英杰.钙基工业固废循环捕集CO2性能研究进展[J].煤炭学报,2022,47(11):3926-3935. |
| ZHAO Wenhan, WU Shuimu, LI Yingjie.A review on cyclic CO2 capture performance of calcium-based industrial solid waste[J].Journal of China Coal Society,2022,47(11):3926-3935. | |
| [2] | 张媛,高彩云,李东,等.电石渣改性制备高效CO2复合吸收剂[J].人工晶体学报,2024,53(2):344-354. |
| ZHANG Yuan, GAO Caiyun, LI Dong,et al.High efficiency CO2 composite absorbent prepared by modification of carbide slag[J].Journal of Synthetic Crystals,2024,53(2):344-354. | |
| [3] | HU Yingchao, LIU Wenqiang, CHEN Hongqiang,et al.Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture[J].Fuel,2016,181:199-206. |
| [4] | AFANDI N, SATGUNAM M, MAHALINGAM S,et al.Review on the modifications of natural and industrial waste CaO based sorbent of calcium looping with enhanced CO2 capture capacity[J].Heliyon,2024,10(5):e27119. |
| [5] | LI Yingjie, SU Mengying, XIE Xin,et al.CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis[J].Applied Energy,2015,145:60-68. |
| [6] | 赵美鑫,耿一琪,刘世军,等.电石渣掺杂改性制备高稳定CO2吸附剂及其性能研究[J].山西大学学报(自然科学版),2025,48(4):806-814. |
| ZHAO Meixin, GENG Yiqi, LIU Shijun,et al.Preparation of high-stability CO2 adsorbents by doping modification of calcium carbide slag and its properties[J].Journal of Shanxi University(Natural Science Edition),2025,48(4):806-814. | |
| [7] | MA Xiaotong, LI Yingjie, CHI Changyun,et al.CO2 capture performance of cement-modified carbide slag[J].Korean Journal of Chemical Engineering,2017,34(2):580-587. |
| [8] | MA Xiaotong, LI Yingjie, CHI Changyun,et al.CO2 capture performance of mesoporous synthetic sorbent fabricated using carbide slag under realistic calcium looping conditions[J].Energy & Fuels,2017,31(7):7299-7308. |
| [9] | CHEN Weilong, TANG Yuting, LIU Hongyu,et al.Preparation of nano-Al2O3 support CaO-based sorbent pellets by novel methods for high-temperature CO2 capture[J].Journal of Environmental Chemical Engineering,2024,12(6):114157. |
| [10] | VALVERDE J M, SANCHEZ-JIMENEZ P E, PEREZ-MAQUEDA L A.Ca-looping for postcombustion CO2 capture:A comparative analysis on the performances of dolomite and limestone[J].Applied Energy,2015,138:202-215. |
| [11] | 祁星朝,王峰,武洁,等.电石渣/碳酸镁体系的热分解行为与机制研究[J].无机盐工业,2024,56(10):118-126. |
| QI Xingzhao, WANG Feng, WU Jie,et al.Study on pyrolysis behavior and mechanism of calcium carbide slag/magnesium carbonate system[J].Inorganic Chemicals Industry,2024,56(10):118-126. | |
| [12] | MA Xiaotong, LI Yingjie, SHI Lei,et al.Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by-product of biodiesel during calcium looping process[J].Applied Energy,2016,168:85-95. |
| [13] | BIAN Zhiguo, LI Yingjie, WU Shuimu,et al.SO2 removal performances of Al- and Mg-modified carbide slags from CO2 capture cycles at calcium looping conditions[J].Journal of Thermal Analysis and Calorimetry,2021,144(4):1187-1197. |
| [14] | 祁星朝.基于电石渣资源化利用的钙基CO2吸附剂性能优化[D].呼和浩特:内蒙古工业大学,2024. |
| QI Xingzhao.Performance optimization of calcium-based CO2 adsorbents based on the resource utilization of calcium carbide slag[D].Hohhot:Inner Mongolia University of Technology,2024. | |
| [15] | YAN Xianyao, LI Yingjie, MA Xiaotong,et al.CO2 capture by a novel CaO/MgO sorbent fabricated from industrial waste and dolomite under calcium looping conditions[J].New Journal of Che- mistry,2019,43(13):5116-5125. |
| [16] | HLAING N N, SREEKANTAN S, OTHMAN R,et al.A novel(Zr-Ce) incorporated Ca(OH)2 nanostructure as a durable adsorbent for CO2 capture[J].Materials Letters,2014,133:204-207. |
| [17] | WANG Shengping, FAN Shasha, FAN Lijing,et al.Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J].Environmental Science & Technology,2015,49(8):5021-5027. |
| [18] | MA Xiaotong, LI Yingjie, ZHANG Chunxiao,et al.Development of Mn/Mg-copromoted carbide slag for efficient CO2 capture under realistic calcium looping conditions[J].Process Safety and Environmental Protection,2020,141:380-389. |
| [19] | GAO Caiyun, ZHANG Yuan, LI Dong,et al.Highly cyclic stability and absorbent activity of carbide slag doped with MgO and ZnO for thermochemical energy storage[J].ACS Omega,2022,7(49):45443-45454. |
| [20] | SUN Jian, GUO Yafei, YANG Yuandong,et al.Mode investigation of CO2 sorption enhancement for titanium dioxide-decorated CaO-based pellets[J].Fuel,2019,256:116009. |
| [21] | QIN Kun, WANG T, HUANG J C,et al.Effect of distribution patterns of refractory overlayers on cyclic high temperature CO2 capture using waste oyster shell[J].RSC Advances,2016,6(100):97739-97748. |
| [22] | WANG Guodong, GUO Yafei, YU Jun,et al.Ni-CaO dual function materials prepared by different synthetic modes for integrated CO2 capture and conversion[J].Chemical Engineering Journal,2022,428:132110. |
| [23] | LI Xiaoyu, ZHAO Keping, HE Xi,et al.Evaluation of calcium looping CO2 capture and thermochemical energy storage performances of different stabilizers promoted CaO-based composites derived from solid wastes[J].Powder Technology,2024,448:120343. |
| [24] | CAI Jianjun, YAN Feng, LUO Ming,et al.Highly stable CO2 capture performance of binary doped carbide slag synthesized through liquid precipitation method[J].Fuel,2020,280:118575. |
| [25] | FANG Yi, LI Yingjie, ZHANG Youhao,et al.Self-acceleration effect of Mn/Ce-modified carbide slag in CO2 absorption for CaO/CaCO3 energy storage[J].Separation and Purification Technology,2025,357:130153. |
| [26] | MA Xiaotong, LI Yingjie, DUAN Lunbo,et al.CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions[J].Applied Energy,2018,225:402-412. |
| [27] | MA Xiaotong, LI Yingjie, YAN Xianyao,et al.Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture[J].Chemical Engineering Journal,2019,361:235-244. |
| [28] | CHEN Weilong, TANG Yuting, TANG Jiehong,et al.Preparation of corncob-templated carbide slag sorbent pellets by agar method for CO2 capture:One-step synthesis and cyclic performance[J].Separation and Purification Technology,2025,353:128550. |
| [29] | MA Xiaotong, LI Yingjie, QIAN Yi,et al.A carbide slag-based,Ca12Al14O33-stabilized sorbent prepared by the hydrothermal template method enabling efficient CO2 capture[J].Energies,2019,12(13):2617. |
| [30] | ZHANG Chunxiao, LI Yingjie, BIAN Zhiguo,et al.Simultaneous CO2 capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca(OH)2 cycles[J].Chinese Journal of Chemical Engineering,2021,36:76-85. |
| [31] | ERANS M, MANOVIC V, ANTHONY E J.Calcium looping sorbents for CO2 capture[J].Applied Energy,2016,180:722-742. |
| [32] | 孙荣岳,叶江明,毕小龙,等.丙酸改性提高电石渣捕集CO2性能的动力学分析[J].化工进展,2017,36(6):2325-2330. |
| SUN Rongyue, YE Jiangming, BI Xiaolong,et al.Kinetic analysis on CO2 capture performance of carbide slag modified by propionic acid[J].Chemical Industry and Engineering Progress,2017,36(6):2325-2330. | |
| [33] | 宋浩,卢奕江,谌缘,等.有机酸改性对电石渣碳酸化及循环特性的影响研究[J].燃料化学学报(中英文),2025,53(4):481-492. |
| SONG Hao, LU Yijiang, CHEN Yuan,et al.Study on the effect of organic acid modification on carbonation and cycle performance of carbide slag[J].Journal of Fuel Chemistry and Technology,2025,53(4):481-492. | |
| [34] | WANG Xinyu, ZHAN Qiwei, ZHANG Xuan,et al.Carbon fixation performance and mechanism of composite modification of steel slag using acids coordinated with calcium carbide residue[J].Construction and Building Materials,2024,451:138758. |
| [35] | SUN Rongyue, ZHU Hongliang, XIAO Rui.Enhancement of CO2 capture and microstructure evolution of the spent calcium-based sorbent by the self-reactivation process[J]. Chinese Journal of Chemical Engineering,2021,34(1):160-166. |
| [36] | 孙荣岳,胡天骄,尹鹏祥,等.失活石灰石自活化增强循环捕集CO2特性[J].洁净煤技术,2024,30(2):340-346. |
| SUN Rongyue, HU Tianjiao, YIN Pengxiang,et al.Self-reactivation of spent limestone to enhance its CO2 capture capacity in multiple cycles[J].Clean Coal Technology,2024,30(2):340-346. | |
| [37] | HE Zirui, LI Yingjie, MA Xiaotong,et al.Influence of steam in carbonation stage on CO2 capture by Ca-based industrial waste during calcium looping cycles[J].International Journal of Hydrogen Energy,2016,41(7):4296-4304. |
| [38] | ZHANG Wan, LI Yingjie, HE Zirui,et al.CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions[J].Applied Energy,2017,206:869-878. |
| [39] | PAPALAS T, ANTZARAS A N, LEMONIDOU A A.Evaluation of calcium-based sorbents derived from natural ores and industrial wastes for high-temperature CO2 capture[J].Industrial & Engineering Chemistry Research,2020,59(21):9926-9938. |
| [40] | WANG Zhiqiang, CUI Longpeng, LIU Yanfang,et al.High-efficiency CO2 zisequestration through direct aqueous carbonation of carbide slag:Determination of carbonation reaction and optimization of operation parameters[J].Frontiers of Environmental Science & Engineering,2024,18(1):156-167. |
| [41] | VASIJIJE M, DENNIS L, EDWARD J A.Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor[J].Fuel,2008,87(15/16):3344-3352. |
| [42] | GONZÁLEZ B, BLAMEY J, AL-JEBOORI M J,et al.Additive effects of steam addition and HBr doping for CaO-based sorbents for CO2 capture[J].Chemical Engineering and Processing:Process Intensification,2016,103:21-26. |
| [43] | YUAN Yi, LI Yingjie, DUAN Lunbo,et al.CaO/Ca(OH)2 thermochemical heat storage of carbide slag from calcium looping cycles for CO2 capture[J].Energy Conversion and Management,2018,174:8-19. |
| [1] | 张龙华, 张志超. 协同改性提升三元正极材料LiNi0.9Co0.05Mn0.05O2结构稳定性研究[J]. 无机盐工业, 2025, 57(9): 82-87. |
| [2] | 陈蒙蒙, 徐德刊, 黄继龙, 唐志兰, 张许, 谭超, 王肖虎, 彭文博. 镍改性钛系锂离子筛的制备及性能研究[J]. 无机盐工业, 2025, 57(9): 37-45. |
| [3] | 李纾黎, 陈士朋, 张伶俐, 史发年. 低温锂离子电池石墨负极材料的缺陷、改性策略与展望[J]. 无机盐工业, 2025, 57(9): 21-29. |
| [4] | 胡平平, 何小志. 混凝土表面B/C3N5光催化环氧自清洁涂层去除NO性能研究[J]. 无机盐工业, 2025, 57(9): 117-124. |
| [5] | 沈萌萌. g-C3N4/聚苯胺复合材料的制备及其在光催化还原CO2中的应用研究[J]. 无机盐工业, 2025, 57(8): 123-130. |
| [6] | 王志刚, 胡晓东, 王辉, 薛亮钢, 田健强. NO2-改性水滑石的制备及其对钢筋阻锈性能研究[J]. 无机盐工业, 2025, 57(8): 74-81. |
| [7] | 熊晓云, 穆林波, 杜学敏, 胡清勋. 硼、磷改性氧化铝的制备及其在催化裂化中的应用研究[J]. 无机盐工业, 2025, 57(8): 117-122. |
| [8] | 韩星, 史丹丹, 王兴权, 张天应, 曹悦, 王怡莹, 朱祥, 许乃才. 十二烷基硫酸钠改性镁铝水滑石及对Pb2+的吸附性能研究[J]. 无机盐工业, 2025, 57(8): 48-57. |
| [9] | 王小玉, 杜瑞成, 李燕, 杨述燕. 二氧化钛基纳米材料优化改性的研究进展[J]. 无机盐工业, 2025, 57(7): 24-34. |
| [10] | 党建猛, 张志超, 曹中凯, 李紫萱, 申继学. 提升高镍正极材料快充条件下电化学性能研究进展[J]. 无机盐工业, 2025, 57(7): 14-23. |
| [11] | 赵雪卿, 王中慧, 王永伟, 王志雨, 霍晓东. 废弃香烟过滤嘴基氮掺杂多孔炭的制备及吸附性能研究[J]. 无机盐工业, 2025, 57(7): 110-119. |
| [12] | 杨晶晶, 徐晨晨, 朱丽燕, 蒯强, 吴兵党, 黄天寅. 碳酸钾活化藻基生物炭吸附去除水中硝基咪唑类抗生素研究[J]. 无机盐工业, 2025, 57(7): 99-109. |
| [13] | 杨恒宇, 莫恒亮, 李天玉, 吕龙, 陈亦力, 王珞聪, 赵文芳, 刘曼曼. 利用混晶TiO2为钛源合成高耐酸性钛系锂离子筛的研究[J]. 无机盐工业, 2025, 57(7): 57-63. |
| [14] | 刘建伟, 谢晓杰. 改性氧化石墨烯对水泥砂浆性能的影响[J]. 无机盐工业, 2025, 57(7): 93-98. |
| [15] | 张涵飞, 申红艳, 刘有智. MG复合材料的制备及其对甲基橙的吸附性能研究[J]. 无机盐工业, 2025, 57(6): 100-107. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||
