无机盐工业
主管:中海油天津化工研究设计院有限公司
主办:中海油天津化工研究设计院有限公司
   中海油炼油化工科学研究院(北京)有限公司
   中国化工学会无机酸碱盐专业委员会
ISSN 1006-4990 CN 12-1069/TQ

无机盐工业 ›› 2025, Vol. 57 ›› Issue (8): 123-130.doi: 10.19964/j.issn.1006-4990.2024-0438

• 催化材料 • 上一篇    

g-C3N4/聚苯胺复合材料的制备及其在光催化还原CO2中的应用研究

沈萌萌()   

  1. 河南科技职业大学,河南 周口 466000
  • 收稿日期:2024-08-05 出版日期:2025-08-10 发布日期:2024-09-09
  • 作者简介:沈萌萌(1989— ),硕士,讲师,主要研究方向为金属催化化学和有机化学;E-mail:shenmm1989@126.com
  • 基金资助:
    高等学校基本科研项目面上项目(LJKM20221989)

Study on preparation of g-C3N4/polyaniline composites and their application in photocatalytic reduction of CO2

SHEN Mengmeng()   

  1. Henan vocational university of science and technology,Zhoukou 466000,China
  • Received:2024-08-05 Published:2025-08-10 Online:2024-09-09

摘要:

通过构建异质结的策略,利用光催化材料石墨相氮化碳(g-C3N4)和导电聚合物聚苯胺(PANI)耦合制备了g-C3N4/PANI复合材料。采用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)、扫描电镜(SEM)、紫外-可见漫反射光谱(UV-vis DRS)、稳态/瞬态光致发光光谱(PL和TRPL)、瞬态光电流谱(TPC)和电化学交流阻抗谱(EIS)等技术手段对复合材料的形貌、元素组成和光电化学等性质进行了表征和性能评价。结果表明,g-C3N4/PANI复合材料的结构是PANI均匀地覆盖在g-C3N4表面,并且g-C3N4和PANI之间存在异质结结构。经PANI包裹后,g-C3N4的比表面积从21.31 m²/g显著提升至66.13 m²/g,增大了约2.10倍,有效地提升了光催化性能。通过优化PANI添加量,g-C3N4/PANI(3%,质量分数,下同)复合材料表现出最佳的可见光光催化还原CO2性能,CH3OH的时空产率达到3.12 μmol/(g·h),是纯g-C3N4的4.27倍。异质结的构建拓宽了g-C3N4/PANI(3%)复合材料在可见光区光谱响应的范围,有效促进了光生载流子的分离,交流阻抗显著降低,电荷转移速率明显提升,从而使光催化还原CO2性能得到显著提升。气相色谱分析表明,反应的主要产物为CH3OH,同时伴有少量的CO生成,证实了g-C3N4/PANI(3%)复合材料作为催化剂具有较好的选择性。循环5次后,CH3OH的时空产率仍高于2.97 μmol/(g·h),保持了95%以上的活性。最后,通过价带X射线光电子能谱(VB-XPS)表征和Mott-Schottky曲线分析得到了能带结构,g-C3N4/PANI复合材料可见光光催化还原CO2机理遵循Type-Ⅱ机理。

关键词: 光催化, CO2还原, 异质结, 复合材料, 氮化碳

Abstract:

The g-C3N4/PANI composite was prepared by coupling the photocatalytic material graphite carbon nitride(g-C3N4) and the conductive polymer polyaniline(PANI) by constructing a heterojunction strategy.The morphology,elemental composition and photoelectrochemical properties of the composites were characterized and evaluated by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),UV-vis diffuse reflectance spectroscopy(UV-vis DRS),steady-state/transient photoluminescence spectroscopy(PL and TRPL),transient photocurrent spectroscopy(TPC) and electrochemical impedance spectroscopy(EIS).The results showed that the structure of g-C3N4/PANI composites was PANI uniformly covered on the surface of g-C3N4,and there was a heterojunction structure between g-C3N4 and PANI.After coated by PANI,the specific surface area of g-C3N4 was significantly increased from 21.31 to 66.13 m2/g,an increase of about 2.10 times,which effectively improved the photocatalytic performance.By optimizing the amount of PANI,the g-C3N4/PANI(3%) composite exhibited the best visible light photocatalytic reduction of CO2 performance,and the space-time yield of CH3OH reached 3.12 μmol/(g·h),which was 4.27 times that of pure g-C3N4.The construction of heterojunction broadened the spectral response range of g-C3N4/PANI(3%) composites in the visible light region,effectively promoted the separation of photogenerated carriers,significantly reduced the AC impedance,and significantly improved the charge transfer rate,thereby significantly improving the photocatalytic reduction of CO2 performance.Gas chromatography analysis showed that the main product of the reaction was CH3OH,accompanied by a small amount of CO formation,which confirmed that the g-C3N4/PANI(3%) composite had good selectivity as a catalyst.After 5 cycles,the space-time yield of CH3OH was still higher than 2.97 μmol/(g·h),and the activity was maintained above 95%.Finally,the spuce-time energy band structure was obtained by valence band-X-ray photoelectron spectroscopy(VB-XPS) characterization and Mott-Schottky curve analysis.The visible light photocatalytic reduction of CO2 by g-C3N4/PANI composites followed the Type-Ⅱ mechanism.

Key words: photocatalysis, CO2 reduction, heterojunction, composite materials, carbon nitride

中图分类号: