无机盐工业 ›› 2025, Vol. 57 ›› Issue (8): 1-11.doi: 10.19964/j.issn.1006-4990.2024-0695
• 综述与专论 • 下一篇
王泽辉1(
), 李恩泽2, 邱逊钊1, 尚文馨1, 李莎莎1(
), 冯国彬1, 石彩霞1
收稿日期:2024-12-26
出版日期:2025-08-10
发布日期:2025-02-14
通讯作者:
李莎莎(1993— ),女,博士,副教授,硕士生导师,主要从事能源催化的研究;E-mail:lisstylg@hotmail.com。作者简介:王泽辉(1999— ),男,硕士研究生,主要从事能源催化的研究;E-mail:wzh46915@163.com。
基金资助:
WANG Zehui1(
), LI Enze2, QIU Xunzhao1, SHANG Wenxin1, LI Shasha1(
), FENG Guobin1, SHI Caixia1
Received:2024-12-26
Published:2025-08-10
Online:2025-02-14
摘要:
氢能是一种绿色低碳、用途广泛的二次能源,是国家能源体系的重要组成部分。相比其他制氢方式,电解海水是一种可再生、持续且节约淡水资源的制氢技术。但海水成分复杂,特别是海水中Cl-浓度较高,在电解海水过程中,会发生氯离子氧化反应,与阳极析氧反应发生竞争并腐蚀电极,从而显著降低电解海水制氢效率。综述了电解海水反应过程中涉及的析氧反应(OER)、析氯反应(ClER)、析氢反应(HER)的基本原理,并对最近报道的析氧抑氯、析氢非贵金属基催化剂进行了分析和概括。通过设计具有更低过电位的高活性OER、HER催化剂,在电极-电解液界面构建Cl-阻挡层,用热力学上更有利的电氧化反应代替OER,以及对Cl物种进行原位快速消耗等策略可提升电解海水效率并减缓腐蚀。最后对该领域所面临的挑战和发展方向进行展望,为开发应用于工业化电解海水制氢且高效稳定的阳极和阴极电催化剂提供方向。
中图分类号:
王泽辉, 李恩泽, 邱逊钊, 尚文馨, 李莎莎, 冯国彬, 石彩霞. 直接电解海水制氢阳极和阴极催化剂的研究进展[J]. 无机盐工业, 2025, 57(8): 1-11.
WANG Zehui, LI Enze, QIU Xunzhao, SHANG Wenxin, LI Shasha, FENG Guobin, SHI Caixia. Research progress on anode and cathode electrocatalysts for hydrogen production by directly seawater electrolysis[J]. Inorganic Chemicals Industry, 2025, 57(8): 1-11.
| [1] | MAJUMDAR A, DEUTCH J M, PRASHER R S,et al.A framework for a hydrogen economy[J].Joule,2021,5(8):1905-1908. |
| [2] | 戴远哲,涂远东,曹圆媛.我国氢能产业发展现状、制约瓶颈及应对策略[J].能源研究与利用,2024(4):29-33,39. |
| DAI Yuanzhe, TU Yuandong, CAO Yuanyuan.Development status,constraints and countermeasures of hydrogen energy industry in China[J].Energy Research & Utilization,2024(4):29-33,39. | |
| [3] | GERMSCHEIDT R L, MOREIRA D E B, YOSHIMURA R G,et al.Hydrogen environmental benefits depend on the way of production:An overview of the main processes production and challenges by 2050[J].Advanced Energy and Sustainability Research,2021,2(10):2100093. |
| [4] | LI Xiaona, RAORANE C J, XIA Changlei,et al.Latest approaches on green hydrogen as a potential source of renewable energy towards sustainable energy:Spotlighting of recent innovations,challenges,and future insights[J].Fuel,2023,334:126684. |
| [5] | 魏晓天,袁昊骞,刘东.电解海水制氢的机遇与挑战[J].当代化工研究,2023(7):5-7. |
| WEI Xiaotian, YUAN Haoqian, LIU Dong.Opportunities and challenges of seawater electrolysis hydrogen production[J].Modern Chemical Research,2023(7):5-7. | |
| [6] | 王秀林,戴若云,张雨晴,等.海水直接电解制氢研究进展[J].现代化工,2023,43(11):56-60. |
| WANG Xiulin, DAI Ruoyun, ZHANG Yuqing,et al.Research progress on hydrogen production by direct electrolysis of seawater[J].Modern Chemical Industry,2023,43(11):56-60. | |
| [7] | 胡鹏,李志川,李子航,等.深远海原位电解海水制氢的战略及技术研究[J].太阳能学报,2024,45(8):63-70. |
| HU Peng, LI Zhichuan, LI Zihang,et al.Research on strategic and technical of hydrogen production by deep offshore in situ electrolysis of seawater[J].Acta Energiae Solaris Sinica,2024,45(8):63-70. | |
| [8] | Xiang LYU, SEROV A.Cutting-edge methods for amplifying the oxygen evolution reaction during seawater electrolysis:A brief synopsis[J].Industrial Chemistry & Materials,2023,1(4):475-485. |
| [9] | HUANG Chuqiang, WANG Zhouzhou, CHENG Shaojun,et al.Challenges and strategies of chlorine inhibition in anode systems for seawater electrolysis[J].Science China Chemistry,2024,67(10):3198-3208. |
| [10] | 崔柏桦,施毅,李根,等.海水电解面临的挑战与机遇:含氯电化学中先进材料研究进展[J].物理化学学报,2022,38(6):79-89. |
| CUI Baihua, SHI Yi, LI Gen,et al.Challenges and opportunities for seawater electrolysis:A mini-review on advanced materials in chlorine-involved electrochemistry[J].Acta Physico-Chimica Sinica,2022,38(6):79-89. | |
| [11] | LIU Guangbo, XU Yingshuang, YANG Teng,et al.Recent advances in electrocatalysts for seawater splitting[J].Nano Materials Science,2023,5(1):101-116. |
| [12] | CHATENET M, POLLET B G, DEKEL D R,et al.Water electrolysis:From textbook knowledge to the latest scientific strategies and industrial developments[J].Chemical Society Reviews,2022,51(11):4583-4762. |
| [13] | 路文龙,张帅,吴亮.海水电解制氢研究进展[J].电源技术,2024,48(5):818-828. |
| LU Wenlong, ZHANG Shuai, WU Liang.Research progress of hydrogen production by seawater electrolysis[J].Chinese Journal of Power Sources,2024,48(5):818-828. | |
| [14] | BOLAR S, SHIT S, CHANDRA MURMU N,et al.Progress in theoretical and experimental investigation on seawater electrolysis:Opportunities and challenges[J].Sustainable Energy & Fuels,2021,5(23):5915-5945. |
| [15] | HU Chun, YUE Kaihang, HAN Jiajia,et al.Misoriented high-entropy iridium ruthenium oxide for acidic water splitting[J].Science Advances,2023,9(37):eadf9144. |
| [16] | HU Shuqi, GE Shiyu, LIU Heming,et al.Low-dimensional electrocatalysts for acidic oxygen evolution:Intrinsic activity,high current density operation,and long-term stability[J].Advanced Functional Materials,2022,32(23):2201726. |
| [17] | 李涛,武斌,李会录,等.海水电解析氧反应催化剂的研究进展[J].现代化工,2021,41(8):24-28,32. |
| LI Tao, WU Bin, LI Huilu,et al.Research progress on catalysts for oxygen evolution reaction through seawater electrolysis[J].Modern Chemical Industry,2021,41(8):24-28,32. | |
| [18] | LI Shasha, LI Enze, AN Xiaowei,et al.Transition metal-based catalysts for electrochemical water splitting at high current density:Current status and perspectives[J].Nanoscale,2021,13(30):12788-12817. |
| [19] | 苏建,宋华.特殊结构、高稳定性电解海水OER催化剂的研究进展[J].精细化工,2023,40(4):697-705,716. |
| SU Jian, SONG Hua.Research progress on OER catalyst with special structure and high stability for seawater electrolysis[J].Fine Chemicals,2023,40(4):697-705,716. | |
| [20] | 郑学文,赵蕊,吴家哲,等.电解海水催化剂的设计与改性[J].化工进展,2022,41(11):5800-5810. |
| ZHENG Xuewen, ZHAO Rui, WU Jiazhe,et al.Design and modification of electrocatalysts for seawater splitting:A review[J].Chemical Industry and Engineering Progress,2022,41(11):5800-5810. | |
| [21] | HU Huashuai, WANG Xiaoli, ATTFIELD J P,et al.Metal nitrides for seawater electrolysis[J].Chemical Society Reviews,2024,53(1):163-203. |
| [22] | CHEN Lin, YU Chang, DONG Junting,et al.Seawater electrolysis for fuels and chemicals production:Fundamentals,achievements,and perspectives[J].Chemical Society Reviews,2024,53(14):7455-7488. |
| [23] | HE Wenjun, LI Xinxin, TANG Cheng,et al.Materials design and system innovation for direct and indirect seawater electrolysis[J].ACS Nano,2023,17(22):22227-22239. |
| [24] | 王岩,张树聪,汪兴坤,等.电解海水析氢反应过渡金属基催化剂的研究进展[J].应用化学,2022,39(6):927-940. |
| WANG Yan, ZHANG Shucong, WANG Xingkun,et al.Research progress on transition metal-based catalysts for hydrogen evolution reaction via seawater electrolysis[J].Chinese Journal of Applied Chemistry,2022,39(6):927-940. | |
| [25] | ZHANG Sixie, XU Wenwen, CHEN Haocheng,et al.Progress in anode stability improvement for seawater electrolysis to produce hydrogen[J].Advanced Materials,2024,36(37):2311322. |
| [26] | LIU Yu, WANG Yong, FORNASIERO P,et al.Long-term durability of seawater electrolysis for hydrogen:From catalysts to systems[J].Angewandte Chemie International Edition,2024,63(47):e202412087. |
| [27] | ZHANG Xinyu, XIE Jingyi, MA Yu,et al.An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction[J].Chemical Engineering Journal,2022,430:132312. |
| [28] | 孟凡,张惠铃,姬姗姗,等.高效电解水制氢发展现状与技术优化策略[J].黑龙江大学自然科学学报,2021,38(6):702- 713. |
| MENG Fan, ZHANG Huiling, JI Shanshan,et al.Progress and technology strategies of hydrogen evolution reaction by high efficiency water electrolysis[J].Journal of Natural Science of Heilongjiang University,2021,38(6):702-713. | |
| [29] | ZHANG Dan, SHI Yue, YIN Jiao,et al.Recent advances for seawater hydrogen evolution[J].ChemCatChem,2024,16(14):e202301305. |
| [30] | 申雪然,冯彩虹,代政,等.电解海水制氢的研究进展[J].化工新型材料,2021,49(12):55-60. |
| SHEN Xueran, FENG Caihong, DAI Zheng,et al.Progress on hydrogen generation by splitting seawater[J].New Chemical Materials,2021,49(12):55-60. | |
| [31] | YU Luo, ZHU Qing, SONG Shaowei,et al.Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J].Nature Communications,2019,10:5106. |
| [32] | LONG Yanju, JIANG Pingping, LIAO Peisen,et al.Electronic structure regulation by Fe doped Ni-phosphides for long-term overall water splitting at large current density[J].Small,2024,20(46):2403991. |
| [33] | XU Bo, LIANG Jie, SUN Xuping,et al.Designing electrocatalysts for seawater splitting:Surface/interface engineering toward enhanced electrocatalytic performance[J].Green Chemistry,2023,25(10):3767-3790. |
| [34] | VOS J G, WEZENDONK T A, JEREMIASSE A W,et al.MnO x /IrO x as selective oxygen evolution electrocatalyst in acidic chloride solution[J].Journal of the American Chemical Society,2018,140(32):10270-10281. |
| [35] | KUANG Yun, KENNEY M J, MENG Yongtao,et al.Solar-driven,highly sustained splitting of seawater into hydrogen and oxygen fuels[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(14):6624-6629. |
| [36] | KANG Xin, YANG Fengning, ZHANG Zhiyuan,et al.A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer[J].Nature Communications,2023,14:3607. |
| [37] | GUO Jiaxin, ZHENG Yao, HU Zhenpeng,et al.Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J].Nature Energy,2023,8(3):264-272. |
| [38] | MA Tengfei, XU Wenwen, LI Boran,et al.The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes[J].Angewandte Chemie International Edition,2021,60(42):22740-22744. |
| [39] | YU Meng, LI Jinhan, LIU Fangming,et al.Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting[J].Journal of Energy Chemistry,2022,72:361-369. |
| [40] | LI Shasha, QIU Xunzhao, AN Xiaowei,et al.Metal-organic framework derived spinel tricobalt tetroxide with trifle iridium sites for near-pH-neutral seawater electrolysis[J].Chemical Engineering Journal,2024,491:151924. |
| [41] | ZHUANG Linzhou, LI Jiankun, WANG Keyu,et al.Structural buffer engineering on metal oxide for long-term stable seawater splitting[J].Advanced Functional Materials,2022,32(25):2201127. |
| [42] | HUANG Linsen, WANG Pengtang, JIANG Yunling,et al.Ethylene electrooxidation to 2-chloroethanol in acidic seawater with natural chloride participation[J].Journal of the American Chemical Society,2023,145(28):15565-15571. |
| [43] | LIU Kesheng, GAO Xutao, LIU Chuxuan,et al.Energy-saving hydrogen production by seawater splitting coupled with PET plastic upcycling[J].Advanced Energy Materials,2024,14(17):2304065. |
| [44] | WANG Haoyu, ZHAI Sixiang, WANG Hao,et al.Taking advantage of potential coincidence region:Insights into gas production behavior in advanced self-activated hydrazine-assisted alkaline seawater electrolysis[J].ACS Nano,2024.DOi:10.1021/acsnano.4c04831. |
| [45] | GUO Lili, CHI Jingqi, ZHU Jiawei,et al.Dual-doping NiMoO4 with multi-channel structure enable urea-assisted energy-saving H2 production at large current density in alkaline seawater[J].Applied Catalysis B:Environmental,2023,320:121977. |
| [46] | MAO Qiqi, DENG Kai, YU Hongjie,et al. In situ reconstruction of partially hydroxylated porous Rh metallene for ethylene glycol-assisted seawater splitting[J].Advanced Functional Materials,2022,32(31):2201081. |
| [47] | DENG Binglu, SHEN Jie, LU Jinxing,et al.Ru doping triggering reconstruction of cobalt phosphide for coupling glycerol electrooxidation with seawater electrolysis[J].Journal of Energy Chemistry,2025,100:317-326. |
| [48] | XU Kaiyang, LIANG Lecheng, LI Tong,et al.Pt1.8Pd0.2CuGa intermetallic nanocatalysts with enhanced methanol oxidation performance for efficient hybrid seawater electrolysis[J].Advanced Materials,2024,36(31):2403792. |
| [49] | WU Jia, ZHAI Zhixiang, YIN Shibin,et al.General formation of interfacial assembled hierarchical micro-nano arrays for biomass upgrading-coupled hydrogen production[J].Advanced Functional Materials,2024,34(6):2308198. |
| [50] | BAO Deyu, HUANG Linsen, GAO Yingjie,et al.Dynamic creation of a local acid-like environment for hydrogen evolution reaction in natural seawater[J].Journal of the American Chemical Society,2024,146(50):34711-34719. |
| [51] | 张豹,权凯栋,王永锋,等.纳米花状Fey-NiCoSx@NF催化材料制备及电解海水制氢析氧的研究[J].无机盐工业,2025,57(2):130-137. |
| ZHANG Bao, QUAN Kaidong, WANG Yongfeng,et al.Study on fabrication of nanoflower-like Fe y -NiCoS x @NF catalysts and their application in hydrogen evolution and oxygen evolution during seawater electrolysis[J].Inorganic Chemicals Industry,2025,57(2):130-137. | |
| [52] | LIANG Jie, CAI Zhengwei, HE Xun,et al.Electroreduction of alkaline/natural seawater:Self-cleaning Pt/carbon cathode and on-site co-synthesis of H2 and Mg hydroxide nanoflakes[J].Chem,2024,10(10):3067-3087. |
| [53] | ZHAO Liang, ZHOU Shuanglong, LV Zheng,et al.Anti-precipitation molecular metal chalcogenide complexes modification for efficient direct alkaline seawater splitting at the large current density[J].Applied Catalysis B:Environmental,2023,338:122996. |
| [54] | XU Xinwu, LU Yang, SHI Junqin,et al.Corrosion-resistant cobalt phosphide electrocatalysts for salinity tolerance hydrogen evolution[J].Nature Communications,2023,14:7708. |
| [55] | LIANG Jie, CAI Zhengwei, LI Zixiao,et al.Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities[J].Nature Communications,2024,15:2950. |
| [56] | WU Huijuan, ZHAO Zhenyang, WANG Mao,et al.Alkaline-earth-metal regulated metal carbides with bioinspired gradient OH spillover for efficient and long-lasting direct seawater electrolysis[J].Journal of Materials Chemistry A,2024,12(18):10755-10763. |
| [57] | ZHANG Xiaolong, YU Pengcheng, SUN Shuping,et al. In situ ammonium formation mediates efficient hydrogen production from natural seawater splitting[J].Nature Communications,2024,15:9462. |
| [1] | 刘敏, 黄秀, 张理元. S型异质结光催化剂的研究进展[J]. 无机盐工业, 2024, 56(7): 18-27. |
| [2] | 周旋, 李梦锐, 陈一尘, 樊辉强, 王宾, 袁刚. 镍基磷化物复合材料在催化电解水析氢性能提升方面的研究进展[J]. 无机盐工业, 2024, 56(4): 8-15. |
| [3] | 李宇航, 王银斌, 魏强. Fe2O3-Co3O4异质结的熔盐法制备及其析氢性能[J]. 无机盐工业, 2023, 55(8): 51-58. |
| [4] | 马靖文,王军,李响. 钌基碱性电解水制氢催化剂研究进展[J]. 无机盐工业, 2022, 54(4): 69-73. |
| [5] | 唐虎,刘昉. 钼钴二元硫化物制备及其电解水性能研究[J]. 无机盐工业, 2022, 54(2): 65-71. |
| [6] | 李雪莲,吴东恩,邵学兰,黄德友,蒯贤芬. DMFC阳极催化剂用GRQD-NiCo2O4复合物的制备与电催化活性分析[J]. 无机盐工业, 2021, 53(7): 109-112. |
| [7] | 巩飞龙,刘钰恒,刘梦梦,王国庆. 二硫化钼基全pH电催化析氢材料研究进展[J]. 无机盐工业, 2021, 53(11): 1-9. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||
