无机盐工业 ›› 2023, Vol. 55 ›› Issue (1): 1-14.doi: 10.19964/j.issn.1006-4990.2022-0602
• 锂资源开发与利用 • 下一篇
收稿日期:
2022-10-12
出版日期:
2023-01-10
发布日期:
2023-01-17
作者简介:
于建国(1960— ),男,工学博士,讲席教授,主要研究方向为卤水复杂物质体系先进分离技术、无机功能材料制备与材料化学、工业废水及固废资源化技术;E-mail:基金资助:
YU Jianguo(),SUN Qing,QIU Shengbo,ZHANG Yiren,CHEN Jun
Received:
2022-10-12
Published:
2023-01-10
Online:
2023-01-17
摘要:
锂作为支撑新能源战略发展的核心元素,其开发与供给与国民经济息息相关。在“双碳”目标下,中国对锂及其化合物的需求急速上涨,是全球最大的锂消费国,对外依存度高。世界范围内锂资源主要赋存于矿石和盐湖卤水中,是当今国内外锂资源开发的重中之重;随着循环理念与技术的发展,城市矿山中二次锂资源的开发将彰显巨大潜力。总结了从硬岩锂矿、盐湖卤水、退役锂电池中提锂的工业方法及新技术研究进展。其中,硬岩矿提锂工艺的发展方向是低耗减碳;卤水提锂技术应因地制宜、一湖一策,多元分离技术组合应成为未来锂工程建设的最佳选择;重视退役锂电池材料再制备技术研究,可以大大降低锂电发展对自然资源的依赖,是新能源战略可持续发展不可或缺的一环。
中图分类号:
于建国,孙庆,裘晟波,张以任,陈君. 支撑国家新能源战略发展的锂资源开发[J]. 无机盐工业, 2023, 55(1): 1-14.
YU Jianguo,SUN Qing,QIU Shengbo,ZHANG Yiren,CHEN Jun. Lithium resources development supporting national new energy strategy development[J]. Inorganic Chemicals Industry, 2023, 55(1): 1-14.
表1
锂辉石提锂新工艺
方法 | w (Li2O)/% | 具体工艺 | 锂提 取率/% |
---|---|---|---|
氟 化 法 | 4.31[ | 矿+萤石(CaF2)+H2SO4焙烧(127 ℃→227 ℃)→水浸 | 95.7 |
5.51[ | 矿+HF+H2SO4浸出(100 ℃)→水浸 | 96 | |
7.03[ | 转型焙烧→HF浸出(7% HF,75 ℃) | >90 | |
7.03[ | 转型焙烧→HF浸出(4% HF,35 ℃) | 88 | |
7.03[ | 转型焙烧→NaF焙烧(600 ℃)→水 洗→H2SO4浸出 | 90 | |
3.01[ | 矿+NaF机械活化→H2SO4浸出(90 ℃) | 81.2±3.0 | |
7.54[ | 矿+NH4HF2焙烧(157 ℃)→水浸→H2SO4浸出 | 96.45±3.68 | |
氯 化 法 | 7.2[ | 转型焙烧→Cl2焙烧(1 100 ℃) | 约100 |
7.2[ | 转型焙烧→CaCl2焙烧(900 ℃)→水浸 | 90.2 | |
4.5[ | 矿+CaCl2+MgCl2焙烧(1 150 ℃)→水浸 | >96 | |
4.61[ | 矿+CaCl2焙烧(1 000 ℃)→水浸 | 90 | |
盐/ 碱 焙 烧 法 | 5.66[ | 矿+Na2SO4机械活化→焙烧(1 000 ℃)→水浸 | 92 |
7.5±0.15[ | 矿+K2SO4焙烧(1 050 ℃)→水浸 | 96.3±2 | |
5.64[ | 矿+NaOH焙烧(320 ℃)→水浸→H2SO4浸出 | 71(水浸) 88(总) | |
盐/ 碱 水 热 法 | 6.17[ | 转型焙烧→Na2SO4+CaO/NaOH浸出(230 ℃) | 93.30(CaO) 90.70(NaOH) |
7.0/ 5.65[ | 转型焙烧→NaCl/NaCl+NaOH浸出(200 ℃) | >93 | |
5.53[ | 矿+NaOH浸出(250 ℃) | 95.8 | |
4.76[ | 矿+CaO+NaOH浸出(250 ℃) | 93.3 | |
5.28[ | 矿+NaOH浸出(250 ℃)→H2SO4浸出 | 87.3 | |
6.02[ | 矿+KOH浸出(250 ℃)→H2SO4浸出 | 89.9 | |
4.30[ | 转型焙烧→水淬冷却→NaOH浸出(100 ℃) | 93.0 | |
6.05[ | 转型焙烧→Na2CO3浸出(225 ℃) | >96 | |
5.55[ | 转型焙烧→K2CO3浸出(240 ℃) | 96.43 | |
微生物法 | —[ | 真菌Penicillium notatum,Aspergillus niger;硫杆菌Thiobacillus thiooxidans;细菌Bacillus mucilaginosus | — |
—[ | 霉菌Aspergillus niger,Penicillium purpurogenum;酵母菌Rhodotorula rubra | — |
1 | Mineral commodity summaries 2022[R].Reston,VA:U.S.Geological Survey,2022. |
2 | 万青珂, 张洋, 郑诗礼, 等. 废旧磷酸铁锂正极粉磷酸浸出过程的优化及宏观动力学[J].化工进展, 2020, 39(6):2495-2502. |
WAN Qingke, ZHANG Yang, ZHENG Shili, et al. Process optimization and kinetics for leaching spent lithium iron phosphate cathode powder by phosphate acid[J].Chemical Industry and Engineering Progress, 2020, 39(6):2495-2502. | |
3 | YELATONTSEV D, MUKHACHEV A. Processing of lithium ores:Industrial technologies and case studies-A review[J].Hydrometallurgy, 2021, 201.Doi:10.1016/j.hydromet.2021.105578. |
4 | SALAKJANI N K, SINGH P, NIKOLOSKI A N. Production of lithium-A literature review part 1:Pretreatment of spodumene[J].Mineral Processing and Extractive Metallurgy Review, 2020, 41(5):335-348. |
5 | SALAKJANI N K, SINGH P, NIKOLOSKI A N. Mineralogical transformations of spodumene concentrate from Greenbushes,Western Australia.Part 1:Conventional heating[J].Minerals Engineering, 2016, 98:71-79. |
6 | ABDULLAH A A, OSKIERSKI H C, ALTARAWNEH M, et al. Phase transformation mechanism of spodumene during its calcination[J].Minerals Engineering, 2019, 140.Doi:10.1016/j.mineng.2019.105883. |
7 | 周峰, 王计江, 高建勤, 等. 锂辉石隧道窑焙烧工艺可行性研究[J].江西化工, 2019(5):84-86. |
8 | GASAFI E, PARDEMANN R. Processing of spodumene concentrates in fluidized-bed systems[J].Minerals Engineering, 2020, 148.Doi:10.1016/j.mineng.2020.106205. |
9 | PELTOSAARI O, TANSKANEN P, HEIKKINEN E P, et al. α→γ→β-phase transformation of spodumene with hybrid microwave and conventional furnaces[J].Minerals Engineering, 2015, 82:54-60. |
10 | SALAKJANI N K, NIKOLOSKI A N, SINGH P. Mineralogical transformations of spodumene concentrate from Greenbushes,Western Australia.Part 2:Microwave heating[J].Minerals Engineering, 2017, 100:191-199. |
11 | REZAEE M, HAN Shihua, SAGZHANOV D, et al. Microwave-assisted calcination of spodumene for efficient,low-cost and environmentally friendly extraction of lithium[J].Powder Technology, 2022, 397.Doi:10.1016/j.powtec.2021.11.036. |
12 | BRAGA P, FRANÇA S, NEUMANN R, et al. Alkaline process for extracting lithium from spodumene[C]//Proceedings of the 11th International Seminar on Process Hydrometallurgy-Hydroproce- ss.Santiago,Chile,2019:1-9. |
13 | 涂弢, 郭浩, 程华金, 等. 锂辉石-氧化钙烧结法提锂的物相重构与动力学[J].化工进展, 2020, 39(9):3478-3486. |
TU Tao, GUO Hao, CHENG Huajin, et al. Phase reconstruction and kinetics of lithium extraction by spodumenecalcium oxide sintering process[J].Chemical Industry and Engineering Progress, 2020, 39(9):3478-3486. | |
14 | FOSU A Y, KANARI N, BARTIER D, et al. Novel extraction route of lithium from α-spodumene by dry chlorination[J].RSC Advances, 2022, 12(33):21468-21481. |
15 | ELLESTAD R B, LEUTE K M. Method of extracting lithium values from spodumene ores:US, 2516109 A[P].1950-07-25. |
16 | RESENTERA A C, ESQUIVEL M R, RODRIGUEZ M H. Low-temperature lithium extraction from α-spodumene with NH4HF2:Modeling and optimization by least squares and artificial neural networks[J].Chemical Engineering Research and Design, 2021, 167:73-83. |
17 | KUANG Ge, CHEN Zhibin, GUO Hui, et al. Lithium extraction mechanism from α-spodumene by fluorine chemical method[J].Advanced Materials Research, 2012, 524-527:2011-2016. |
18 | GUO Hui, KUANG Ge, WANG Haidong, et al. Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid[J].Minerals, 2017, 7(11).Doi:10.3390/min7110205. |
19 | ROSALES G D, RUIZ M D C, RODRIGUEZ M H. Novel process for the extraction of lithium from β-spodumene by leaching with HF[J].Hydrometallurgy, 2014, 147-148:1-6. |
20 | ROSALES G, RUIZ M, RODRIGUEZ M. Study of the extraction kinetics of lithium by leaching β-spodumene with hydrofluoric acid[J].Minerals, 2016, 6(4).Doi:10.3390/min6040098. |
21 | ROSALES G D, RESENTERA A C J, GONZALEZ J A, et al. Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching[J].Chemical Engineering Research and Design, 2019, 150:320-326. |
22 | ROSALES G D, RESENTERA A C J, WUILLOUD R G, et al. Optimization of combined mechanical activation-leaching parameters of low-grade α-spodumene/NaF mixture using response surface methodology[J].Minerals Engineering, 2022, 184.Doi:10.1016/j.mineng.2022.107633. |
23 | BARBOSA L I, VALENTE G, OROSCO R P, et al. Lithium extraction from β-spodumene through chlorination with chlorine gas[J].Minerals Engineering, 2014, 56:29-34. |
24 | BARBOSA L I, GONZÁLEZ J A, RUIZ M D C. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride[J].Thermochimica Acta, 2015, 605:63-67. |
25 | BRAGA P F A, FRANÇA S C A, PINTO C P, et al. Recovery of lithium from spodumene by chlorination roasting[C]//International Mineral Processing Congress.Cape Town,South Africa,2020:2-11. |
26 | SETOUDEH N, NOSRATI A, WELHAM N J. Phase changes in mechanically activated spodumene-Na2SO4 mixtures after isothermal heating[J].Minerals Engineering, 2020, 155.Doi:10.1016/j.mineng.2020.106455. |
27 | NCUBE T, OSKIERSKI H C, SENANAYAKE G, et al. Sustainable treatment of spodumene:Extraction of lithium from spodumene through roasting with potassium sulfate[J].SSRN, 2022.Doi:10.2139/ssrn.4155153. |
28 | HAN Shihua, SAGZHANOV D, PAN Jinhe, et al. Direct extraction of lithium from α-spodumene by salt roasting-leaching process[J].ACS Sustainable Chemistry & Engineering, 2022, 10(40):13495-13504. |
29 | KUANG Ge, LIU Yu, LI Huan, et al. Extraction of lithium from β-spodumene using sodium sulfate solution[J].Hydrometallurgy, 2018, 177:49-56. |
30 | ALHADAD M F, OSKIERSKI H C, CHISCHI J, et al. Sustainable production of lithium chloride from Β-spodumene:Keatite and analcime processes[J].SSRN, 2022.Doi:10.2139/ssrn.4141972. |
31 | XING Peng, WANG Chengyan, ZENG Lei, et al. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene[J].ACS Sustainable Chemistry & Engineering, 2019, 7(10):9498-9505. |
32 | SONG Yunfeng, ZHAO Tianyu, HE Lihua, et al. A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate[J].Hydrometallurgy, 2019, 189.Doi:10.1016/j.hydromet.2019.105141. |
33 | QIU Shengbo, LIU Chenglin, YU Jianguo. Conversion from α-spodumene to intermediate product Li2SiO3 by hydrothermal alkaline treatment in the lithium extraction process[J].Minerals Engineering, 2022, 183.Doi:10.1016/j.mineng.2022.107599. |
34 | QIU Shengbo, ZHU Yue, JIANG Youfa, et al. Kinetics and mechanism of lithium extraction from α-spodumene in potassium hydroxide solution[J].Industrial & Engineering Chemistry Research, 2022, 61(41):15103-15113. |
35 | YANG Hui, MA Baozhong, LV Yingwei, et al. Novel technology for synergistic extraction of Li and Rb from a complex lithium concentrate[J].ACS Sustainable Chemistry & Engineering, 2022, 10(36):12030-12040. |
36 | 陈亚, 廖婷, 陈白珍, 等. 纯碱压煮法从锂辉石中提取锂的研究[J].有色金属:冶炼部分, 2011(9):21-23, 32. |
CHEN Ya, LIAO Ting, CHEN Baizhen, et al. Extraction of lithium from spodumene by sodium carbonate autoclave proce-ss[J].Nonferrous Metals:Extractive Metallurgy, 2011(9):21-23, 32. | |
37 | 姚文贵, 马鸿文, 刘梅堂, 等. 锂辉石水热钾碱分解制取碳酸锂相平衡模拟与优化试验[J].有色金属:冶炼部分, 2021(4):28-35. |
YAO Wengui, MA Hongwen, LIU Meitang, et al. Preparing lithium carbonate via hydrothermal of spodumene and potash:Phase equilibrium simulation and optimization experiment[J].Nonferrous Metals:Extractive Metallurgy, 2021(4):28-35. | |
38 | KARAVAĬKO G I, KRUTSKO V S, MEL'NIKOVA E O, et al. Role of microorganisms in the destruction of spodumene[J].Mikrobiologiia, 1980, 49(3):547-551. |
39 | REZZA I, SALINAS E, CALVENTE V, et al. Extraction of lithium from spodumene by bioleaching[J].Letters in Applied Microbiology, 1997, 25(3):172-176. |
40 | REZZA I, SALINAS E, ELORZA M, et al. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms[J].Process Biochemistry, 2001, 36(6):495-500. |
41 | TIIHONEN M, HAAVANLAMMI L, KINNUNEN S, et al. Outotec lithium hydroxide process-a novel direct leach process for the production of battery grade lithium hydroxide monohydrate form calcined spodumene[C]//Proceedings of ALTA 2019 Lithium Processing Sessions Including Novel Lithium Processes Forum.Australia,2019:231. |
42 | MARIA A D, ELGHOUL Z, ACKER K V. Environmental assessment of an innovative lithium production process[J].Procedia CIRP, 2022, 105:672-677. |
43 | GRIFFITH C S, GRIFFIN A C, ROPER A, et al. Development of SiLeach® technology for the extraction of lithium silicate minerals[M]//Extraction 2018.Cham,Switzerland:Springer, 2018:2235-2245. |
44 | ZHANG Ye, HU Yuehua, WANG Li, et al. Systematic review of lithium extraction from salt-lake brines via precipitation appro-aches[J].Minerals Engineering, 2019, 139.Doi:10.1016/j.mineng.2019.105868. |
45 | SWAIN B. Recovery and recycling of lithium:A review[J].Separation and Purification Technology, 2017, 172:388-403. |
46 | 蒋晨啸, 陈秉伦, 张东钰, 等. 我国盐湖锂资源分离提取进展[J].化工学报, 2022, 73(2):481-503. |
JIANG Chenxiao, CHEN Binglun, ZHANG Dongyu, et al. Progress in isolating lithium resources from China salt lake brine[J].CIESC Journal, 2022, 73(2):481-503. | |
47 | 马珍. 盐湖锂资源高效分离提取技术研究进展[J].无机盐工业, 2022, 54(10):22-29. |
MA Zhen. Research progress on efficient separation and extraction technology of lithium resources in salt lakes[J].Inorganic Chemicals Industry, 2022, 54(10):22-29. | |
48 | 高峰, 乜贞, 郑绵平. 兑卤法从硫酸钠亚型盐湖卤水中制备碳酸锂[J].高校化学工程学报, 2018, 32(2):472-477. |
GAO Feng, NIE Zhen, ZHENG Mianping. Preparation of lithium carbonate from sodium sulfate subtype brine by a brine mixing method[J].Journal of Chemical Engineering of Chinese Universities, 2018, 32(2):472-477. | |
49 | 郝勇, 张启海, 李广汉, 等. 西藏结则茶卡和龙木错盐湖卤水协同提锂研究[J].无机盐工业, 2013, 45(6):27-29. |
HAO Yong, ZHANG Qihai, LI Guanghan, et al. Synergistic lithium extraction from mixed brines of Jiezechaka and Longmucuo salt lakes in Tibet[J].Inorganic Chemicals Industry, 2013, 45(6):27-29. | |
50 | 赵元艺. 西藏扎布耶盐湖碳酸锂提取盐田工艺及其相关技术研究[D].北京:中国地质科学院, 2000. |
ZHAO Yuanyi. A study on solar pan and its related technologies for extracting lithium carborlate(Li2CO3) from brine of zabuye saline lake,Tibet[D].Beijing:Chinese Academy of Geological Sciences, 2000. | |
51 | 余疆江, 郑绵平, 唐力君, 等. 碳酸盐型卤水实验室模拟提锂和太阳池提锂的对比[J].化工进展, 2013, 32(6):1248-1252, 1260. |
YU Jiangjiang, ZHENG Mianping, TANG Lijun, et al. Comparative study of lithium extraction from the carbonate brine between solar pond and laboratory simulation experiment[J].Chemical Industry and Engineering Progress, 2013, 32(6):1248-1252, 1260. | |
52 | VOLKHIN V V. Ion-exchange properties of mixed ferrocyanides of some transition metals[J].Newsletters of USSR Academy of Sciences:Inorganic Materials, 1971, 7(1):77-81. |
53 | XU Xin, CHEN Yongmei, WAN Pingyu, et al. Extraction of lithium with functionalized lithium ion-sieves[J].Progress in Materials Science, 2016, 84:276-313. |
54 | 刘东帆, 孙淑英, 于建国. 盐湖卤水提锂技术研究与发展[J].化工学报, 2018, 69(1):141-155. |
LIU Dongfan, SUN Shuying, YU Jianguo. Research and development on technique of lithium recovery from salt lake brine[J].CIESC Journal, 2018, 69(1):141-155. | |
55 | FENG Qi, KANOH H,OOI K. Manganese oxide porous cryst-als[J].Journal of Materials Chemistry, 1999, 9(2):319-333. |
56 | 程梦茹, 王舒, 宫飞祥, 等. 锰系锂离子筛的制备及成型方式研究进展[J/OL].盐湖研究, 2022. |
CHENG Mengru, WANG Shu, GONG Feixiang, et al. Research progress on preparation and formating method of manganese series lithium ion sieve[J/OL].Journal of Salt Lake Research, 2022. | |
57 | OOI K, MIYAI Y, SAKAKIHARA J. Mechanism of lithium(1+) insertion in spinel-type manganese oxide.Redox and ion-exchange reactions[J].Langmuir, 1991, 7(6):1167-1171. |
58 | SHEN Xiangmu, CLEARFIELD A. Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxi-de[J].Journal of Solid State Chemistry, 1986, 64(3):270-282. |
59 | LIU Dongfan, SUN Shuying, YU Jianguo. A new high-efficiency process for Li+ recovery from solutions based on LiMn2O4/λ-MnO2 materials[J].Chemical Engineering Journal, 2019, 377.Doi:10.1016/j.cej.2018.08.211. |
60 | LIU Dongfan, SUN Shuying, YU Jianguo. Electrochemical and adsorption behaviour of Li+,Na+,K+,Ca2+,and Mg2+ in LiMn2O4/λ-MnO2 structures[J].The Canadian Journal of Chemical Engineering, 2018, 97:1589-1595. |
61 | GAO Aolei, SUN Zhenhua, LI Shaopeng, et al. The mechanism of manganese dissolution on Li1.6Mn1.6O4 ion sieves with HCl[J].Dalton Transactions, 2018, 47(11):3864-3871. |
62 | ZHANG Guotai, ZHANG Jingze, ZHOU Yuan, et al. Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance[J].Colloids and Surfaces A:Phy- |
sicochemical and Engineering Aspects,2019, 583.Doi:10.1016/j.colsurfa.2019.123950. | |
63 | RYU T, SHIN J, GHOREISHIAN S M, et al. Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite[J].Hydrometallurgy, 2019, 184:22-28. |
64 | QIAN Fangren, ZHAO Bing, GUO Min, et al. Enhancing the Li+ adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe,Co doped[J].Hydrometallurgy, 2020, 193.Doi:10.1016/j.hydromet.2020.105291. |
65 | YUAN Junsheng, YIN Hengbo, JI Zhiyong, et al. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate[J].Industrial & Engineering Chemistry Research, 2014, 53(23):9889-9896. |
66 | CHITRAKAR R, MAKITA Y,OOI K,et al. Lithium recovery from salt lake brine by H2TiO3 [J].Dalton Transactions:Cambridge, England,2014, 43(23):8933-8939. |
67 | VIJAYAKUMAR M, KERISIT S, YANG Zhenguo, et al. Combined 6,7Li NMR and molecular dynamics study of Li diffusion in Li2TiO3 [J].The Journal of Physical Chemistry C, 2009, 113(46):20108-20116. |
68 | HE Gang, ZHANG Liyuan, ZHOU Dali, et al. The optimal condition for H2TiO3-lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design[J].Ionics, 2015, 21(8):2219-2226. |
69 | KANG H W, PARK S B. Effects of Mo sources on Mo doped SrTiO3 powder prepared by spray pyrolysis for H2 evolution under visible light irradiation[J].Materials Science and Engineering:B, 2016, 211:67-74. |
70 | WANG Shulei, ZHENG Shili, WANG Zheming, et al. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves[J].Chemical Engineering Journal, 2018, 332:160-168. |
71 | WANG Shulei, ZHANG Min, ZHANG Ying, et al. High adsorption performance of the Mo-doped titanium oxide sieve for lithium ions[J].Hydrometallurgy, 2019, 187:30-37. |
72 | ISUPOV V P, KOTSUPALO N P, NEMUDRY A P, et al. Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions[J].Studies in Surface Science and Catalysis, 1999, 120:621-652. |
73 | WILLIAMS G R, NORQUIST A J, O'HARE D. Time-resolved,in situ X-ray diffraction studies of staging during phosphonic acid intercalation into[LiAl2(OH)6]Cl·H2O[J].Chemistry of Materials, 2004, 16(6):975-981. |
74 | TARASOV K A, ISUPOV V P, CHUPAKHINA L E, et al. A time resolved,in situ X-ray diffraction study of the de-intercalation of anions and lithium cations from[LiAl2(OH)6] n X·qH2O(X=Cl–,Br–,NO3 –,SO4 2–)[J].Journal of Materials Chemistry, 2004, 14(9):1443-1447. |
75 | PARANTHAMAN M P, LI Ling, LUO Jiaqi, et al. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents[J].Environmental Science & Technology, 2017, 51(22):13481-13486. |
76 | HU Fang, LIN Sen, LI Ping, et al. Quantitative effects of desorption intensity on structural stability and readsorption performance of lithium/aluminum layered double hydroxides in cyclic Li+ extraction from brines with ultrahigh Mg/Li ratio[J].Industrial & Engineering Chemistry Research, 2020, 59:13539-13548. |
77 | LEE J M, BAUMAN W C. Recovery of lithium from brines:US, 4116856 A[P].1978-09-26. |
78 | 李杰. 铝盐锂吸附剂制备工艺及吸附性能研究[D].成都:成都理工大学, 2011. |
LI Jie. Studies on the synthesis of aluminum salt lithium-adsorbent and its adsorptive property[D].Chengdu:Chengdu University of Technology, 2011. | |
79 | ZHONG Jing, LIN Sen, YU Jianguo. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines[J].Desalination, 2021, 505.Doi:10.1016/j.desal.2021.114983. |
80 | ZHONG Jing, LIN Sen, YU Jianguo. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J].Journal of Colloid and Interface Science, 2020, 572:107-113. |
81 | ZHONG Jing, LIN Sen, YU Jianguo. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al-LDHs adsorbent[J].Separation and Purification Technology, 2021, 256.Doi:10.1016/j.seppur.2020.117780. |
82 | 张瑞, 钟静, 林森, 等. 盐湖铝系提锂吸附剂成型条件的影响研究[J].化工学报, 2021, 72(12):6291-6297. |
ZHANG Rui, ZHONG Jing, LIN Sen, et al. Study on the influence of granulation conditions on Li/Al-LDHs for lithium recovery from low grade brine[J].CIESC Journal, 2021, 72(12):6291-6297. | |
83 | 钟静, 陆旗玮, 林森, 等. 锂铝层状吸附剂超低品位卤水提锂冲洗和解吸过程[J].化工进展, 2021, 40(8):4638-4646. |
ZHONG Jing, LU Qiwei, LIN Sen, et al. Washing and desorption procedures research on granulated lithium aluminum layered double hydroxides for lithium recovery from low-grade brine[J].Chemical Industry and Engineering Progress, 2021, 40(8):4638-4646. | |
84 | MORRIS D F C, SHORT E L. The extraction of lithium chloride by tri-n-butyl phosphate[J].Journal of Inorganic and Nuclear Chemistry, 1963, 25(3):291-301. |
85 | 李丽娟, 彭小五, 时东, 等. 含锂卤水中锂资源高效利用与绿色分离的新型萃取体系[J].盐湖研究, 2018, 26(4):1-10. |
LI Lijuan, PENG Xiaowu, SHI Dong, et al. Eco-friendly separation and effective applications of lithium resources from various brine with lithium:Their extractant and extraction system[J].Journal of Salt Lake Research, 2018, 26(4):1-10. | |
86 | SHI Dong, ZHANG Licheng, PENG Xiaowu, et al. Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors[J].Desalination, 2018, 441:44-51. |
87 | XIANG Wei, LIANG Shengke, ZHOU Zhiyong, et al. Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium[J].Hydrometallurgy, 2016, 166:9-15. |
88 | SU Hui, LI Zheng, ZHANG Jian, et al. Recovery of lithium from salt lake brine using a mixed ternary solvent extraction system consisting of TBP,FeCl3 and P507[J].Hydrometallurgy, 2020, 197.Doi:10.1016/j.hydromet.2020.105487. |
89 | ZHANG Licheng, LI Lijuan, SHI Dong, et al. Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system[J].Separation and Purification Technology, 2017, 188:167-173. |
90 | ZHANG Licheng, LI Lijuan, SHI Dong, et al. Recovery of lithium from alkaline brine by solvent extraction with β-diketone[J].Hydrometallurgy, 2018, 175:35-42. |
91 | LIN Jin, LI Zhi, KAN Jian, et al. Photo-driven redox-neutral decarboxylative carbon-hydrogen trifluoromethylation of(hetero)arenes with trifluoroacetic acid[J].Nature Communications, 2017, 8.Doi:10.1038/ncomms14353. |
92 | 赵晓乐, 梁渠, 蔡静. 二苯并-14-冠-4超声波合成及其用于锂镁分离的研究[J].化学研究与应用, 2016, 28(8):1098- 1102. |
ZHAO Xiaole, LIANG Qu, CAI Jing. Study on ultrasonic-aid synthetic method of dibenzo-14-crown-4 and the application in separating lithium and magnesium[J].Chemical Research and Application, 2016, 28(8):1098-1102. | |
93 | SHI Chenglong, JING Yan, JIA Yongzhong. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid[J].Journal of Molecular Liquids, 2016, 215:640- 646. |
94 | SHI Chenglong, JING Yan, XIAO Jiang, et al. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents[J].Separation and Purification Technology, 2017, 172:473-479. |
95 | SUN Qing, CHEN Hang, YU Jianguo. Hydrodynamic investigation on a ceramic hybrid pulsed column for the extraction recovery of lithium from salt lake brine[J].Chemical Engineering and Processing-Process Intensification, 2021, 169.Doi:10.1016/j.cep.2021.108596. |
96 | YI Heng, WANG Yong, SMITH K H, et al. Axial dispersion and mass transfer of a pulsed solvent extraction column with novel ceramic internals[J].Industrial & Engineering Chemistry Research, 2017, 56(11):3049-3058. |
97 | YI Heng, WANG Yong, SMITH K H, et al. Hydrodynamic performance of a pulsed solvent extraction column with novel ceramic internals:Holdup and drop size[J].Industrial & Engineering Chemistry Research, 2017, 56(4):999-1007. |
98 | YANG Gang, SHI Hong, LIU Wenqiang, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J].Chinese Journal of Che- mical Engineering, 2011, 19(4):586-591. |
99 | SOMRANI A, HAMZAOUI A H, PONTIE M. Study on lithium separation from salt lake brines by nanofiltration(NF) and low pressure reverse osmosis(LPRO)[J].Desalination, 2013, 317:184-192. |
100 | 盐科学与化工编辑部. 盐湖锂资源开发破技术瓶颈[J].盐科学与化工, 2019, 48(2):15. |
101 | XU Fang, DAI Liheng, WU Yulin, et al. Li+/Mg2+ separation by membrane separation:The role of the compensatory effect[J].Journal of Membrane Science, 2021, 636.Doi:10.1016/j.memsci.2021.119542. |
102 | CHIANG Y C, HSUB Y Z, RUAAN R C, et al. Nanofiltration membranes synthesized from hyperbranched polyethyleneimi-ne[J].Journal of Membrane Science, 2009, 326(1):19-26. |
103 | LU Dan, MA Tao, LIN Saisai, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+ [J].Journal of Membrane Science, 2021, 635.Doi:10.1016/j.memsci.2021.119504. |
104 | NIE Xiaoyao, SUN Shuying, SUN Ze, et al. Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes[J].Desalination, 2017, 403:128-135. |
105 | JI Zhiyong, CHEN Qingbai, YUAN Junsheng, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J].Separation and Purification Technology, 2017, 172:168-177. |
106 | JIANG Chenxiao, CHEN Binglun, XU Ziang, et al. Ion-“distillation” for isolating lithium from lake brine[J].AIChE Journal, 2022, 68(6).Doi:10.1002/aic.17710. |
107 | SHEHZAD M A, WANG Yaoming, YASMIN A, et al. Biomimetic nanocones that enable high ion permselectivity[J].Angewandte Chemie International Edition, 2019, 58(36):12646-12654. |
108 | ZHANG Dongyu, JIANG Chenxiao, LI Yuanyuan, et al. Electro-driven in situ construction of functional layer using amphoteric molecule:The role of tryptophan in ion sieving[J].ACS Applied Materials & Interfaces, 2019, 11(40):36626-36637. |
109 | YING Jiadi, LIN Yuqing, ZHANG Yiren, et al. Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity[J].Chemical Engineering Journal, 2022, 446.Doi:10.1016/j.cej.2022.137076. |
110 | GUO Yi, YING Yulong, MAO Yiyin, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation[J].Angewandte Chemie International Edition, 2016, 55(48):15120-15124. |
111 | SHENG Fangmeng, WU Bin, LI Xingya, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J].Advanced Materials, 2021, 33(44).Doi:10.1002/adma.202104404. |
112 | XU Tingting, WU Bin, HOU Linxiao, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels[J].Journal of the American Chemical Society, 2022, 144(23):10220-10229. |
113 | HOSHINO T. Lithium recovery from seawater by electrodialysis using ionic liquid-based membrane technology[J].ECS Transactions, 2014, 58(48):173-177. |
114 | ZHAO Zhongwei, LIU Gui, JIA Hang, et al. Sandwiched liquid-membrane electrodialysis:Lithium selective recovery from salt lake brines with high Mg/Li ratio[J].Journal of Membrane Science, 2020, 596.Doi:10.1016/j.memsci.2019.117685. |
115 | YANG Shanshan, YU Shuaijun, YU Lu, et al. Cation exchange membranes coated with polyethyleneimine and crown ether to improve monovalent cation electrodialytic selectivity[J].Membranes, 2021, 11(5).Doi:10.3390/membranes11050351. |
116 | ZHANG Jie, CUI Xulin, YANG Fan, et al. Hybrid cation exchange membranes with lithium ion-sieves for highly enhanced Li+ permeation and permselectivity[J].Macromolecular Materials and Engineering, 2019, 304(1).Doi:10.1002/mame.201800567. |
117 | HOSHINO T. Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor[J].Desalination, 2015, 359:59-63. |
118 | LI Zhen, LI Chunyang, LIU Xiaowei, et al. Continuous electrical pumping membrane process for seawater lithium mining[J].Energy & Environmental Science, 2021, 14(5):3152-3159. |
119 | HU Xianfeng, MOUSA E, YE Guozhu. Recovery of Co,Ni,Mn,and Li from Li-ion batteries by smelting reduction-Part Ⅱ:A pilot-scale demonstration[J].Journal of Power Sources, 2021, 483.Doi:10.1016/j.jpowsour.2020.229089. |
120 | YULIUSMAN,SILVIA, NURQOMARIAH A, et al. Recovery of cobalt and nickel from spent lithium ion batteries with citric acid using leaching process:Kinetics study[J].E3S Web of Conferences, 2018, 67.Doi:10.1051/e3sconf/20186703008. |
121 | SETIAWAN H, PETRUS H T B M, PERDANA I. A kinetics study of acetic acid on cobalt leaching of spent LIBs:Shrinking core model[J].MATEC Web of Conferences, 2018, 154.Doi:10.1051/matecconf/201815401033. |
122 | RANDHAWA N S, GHARAMI K, KUMAR M. Leaching kinetics of spent nickel-cadmium battery in sulphuric acid[J].Hydrometallurgy, 2016, 165:191-198. |
123 | NIU Zhirui, ZOU Yikan, XIN Baoping, et al. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration[J].Chemosphere, 2014, 109:92-98. |
124 | XING Lei, LIN Sen, YU Jianguo. Novel recycling approach to regenerate a LiNi0.6Co0.2Mn0.2O2 cathode material from spent lithium-ion batteries[J].Industrial & Engineering Chemistry Research, 2021, 60(28):10303-10311. |
[1] | 孔令杰, 李光壁, 谢佳豪, 杨新辉, 白晓琴. 盐湖卤水锂提取技术研究进展[J]. 无机盐工业, 2025, 57(1): 14-26. |
[2] | 成春春, 李玉龙, 张志强, 刘雪菁. 溶析结晶用于盐湖卤水提钾和镁锂分离研究[J]. 无机盐工业, 2024, 56(6): 34-39. |
[3] | 陈海霞, 严红, 孙云龙, 马国强. 锂资源提取技术研究进展[J]. 无机盐工业, 2024, 56(1): 9-22. |
[4] | 付煜, 邓觅, 黄冬根, 万金保. 盐湖卤水提锂技术研究进展[J]. 无机盐工业, 2023, 55(9): 9-16. |
[5] | 卢娜娜, 秦亚茹, 马淑清, 王琪慧, 刘兵, 石成龙. 吡啶类离子液体体系对模拟盐湖老卤中锂的萃取研究[J]. 无机盐工业, 2023, 55(7): 45-50. |
[6] | 祝悦,裘晟波,刘程琳,于建国. 机械活化法强化锂辉石矿相重构过程研究[J]. 无机盐工业, 2023, 55(1): 81-86. |
[7] | 赵元元, 陈海峰, 刘云云, 张宏, 吴勇民, 张竞择, 汤卫平. 锰系锂离子筛的制备与改性的研究进展[J]. 无机盐工业, 2022, 54(2): 21-29. |
[8] | 李潘,朱依依. 新能源汽车固态电池中的锂枝晶抑制研究[J]. 无机盐工业, 2022, 54(12): 44-50. |
[9] | 乜贞, 伍倩, 丁涛, 卜令忠, 王云生, 余疆江, 侯献华. 中国盐湖卤水提锂产业化技术研究进展[J]. 无机盐工业, 2022, 54(10): 1-12. |
[10] | 熊家晴,张宇,朱俊国. 双重兑卤法生产低钠光卤石工艺研究[J]. 无机盐工业, 2021, 53(8): 44-49. |
[11] | 谭博,刘香环,刘旭东,易美桂. 锂辉石浸出液提锂除杂规律研究[J]. 无机盐工业, 2021, 53(4): 56-60. |
[12] | 韩佳欢, 乜贞, 方朝合, 伍倩, 曹倩, 王云生, 卜令忠, 余疆江. 中国锂资源供需现状分析[J]. 无机盐工业, 2021, 53(12): 61-66. |
[13] | 程丽群,左付山. 新能源汽车电池用无镁储氢合金的制备与性能研究[J]. 无机盐工业, 2021, 53(11): 71-76. |
[14] | 陈旺,蒋磊,潘巧珍,杨伟伟,朱贤荣,陈琳琳,朱文帅. 钛系锂离子筛的制备及其吸附性能研究[J]. 无机盐工业, 2021, 53(10): 47-51. |
[15] | 顾俊杰,李增荣,唐发满,张许,侯苗苗,王肖虎. 用于盐湖卤水吸附法提锂的连续离子交换工艺研究[J]. 无机盐工业, 2020, 52(7): 46-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|