1 |
XU Kang. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23):11503-11618.
|
2 |
WINTER M, BARNETT B, XU Kang. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23):11433-11456.
|
3 |
CHEN Kai, SHEN Yang, ZHANG Yibo, et al. High capacity and cyclic performance in a three-dimensional composite electrode filled with inorganic solid electrolyte[J]. Journal of Power Sources, 2014, 249: 306-310.
|
4 |
白小洁, 曹德富, 王君慧, 等. 半固态储能电池的研究进展[J]. 无机盐工业, 2022, 54(2):6-15.
|
|
BAI Xiaojie, CAO Defu, WANG Junhui, et al. Research progress on semi-solid energy storage batteries[J]. Inorganic Chemicals Industry, 2022, 54(2):6-15.
|
5 |
CHEN Rusong, LI Qinghao, YU Xiqian, et al. Approaching practically accessible solid-state batteries:Stability issues related to solid electrolytes and interfaces[J]. Chemical Reviews, 2020, 120(14):6820-6877.
|
6 |
HAN Fudong, WESTOVER A S, YUE Jie, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3):187-196.
|
7 |
LI Xiaona, LIANG Jianwen, LUO Jing, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9):2665-2671.
|
8 |
SHI Kai, WAN Zipei, YANG Lu, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie:International Ed.in English, 2020, 59(29):11784-11788.
|
9 |
IIO K, HAYASHI A, MORIMOTO H, et al. Mechanochemical synthesis of high lithium ion conducting materials in the system Li3N-SiS2 [J]. Chemistry of Materials, 2002, 14: 2444-2449.
|
10 |
JENA A, MEESALA Y, HU Shufen, et al. Ameliorating interfacial ionic transportation in all-solid-state Li-ion batteries with interlayer modifications[J]. ACS Energy Letters, 2018, 3(11):2775-2795.
|
11 |
HAN Fudong, ZHU Yizhou, HE Xingfeng, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8).Doi:10.1002/aenm.201501590 .
|
12 |
XU Biyi, LI Wenlong, DUAN Huanan, et al. Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression[J]. Journal of Power Sources, 2017, 354: 68-73.
|
13 |
KOSHIKAWA H, MATSUDA S, KAMIYA K, et al. Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycl-es[J]. Journal of Power Sources, 2018, 376: 147-151.
|
14 |
ZHANG Zhizhen, SHAO Yuanjun, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8):1945-1976.
|
15 |
BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries:Mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1):140-162.
|
16 |
LUO Wei, GONG Yunhui, ZHU Yizhou, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22).Doi:10.1002/adma.201606042 .
|
17 |
HUANG W L, ZHAO N, BI Z J, et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes?[J]. Materials Today Nano, 2020, 10.Doi:10.1016/j.mtnano.2020.100075 .
|
18 |
HUO Hanyu, LI Xiaona, SUN Yipeng, et al. Li2CO3 effects:New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries[J]. Nano Energy, 2020, 73.Doi:10.1016/j.nanoen.2020.104836 .
|
19 |
SCHWIETERT T K, ARSZELEWSKA V A, WANG Chao, et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes[J]. Nature Materials, 2020, 19(4):428-435.
|
20 |
HITZ E M, XIE Hua, LIN Yi, et al. Ion-conducting,electron-bloc-king layer for high-performance solid electrolytes[J]. Small Structures, 2021, 2(8).Doi:10.1002/sstr.202100014 .
|
21 |
TSAI C L, RODDATIS V, CHANDRAN C V, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention[J]. ACS Applied Materials & Interfaces, 2016, 8(16):10617-10626.
|