[1] |
Liu L C, Corma A. Metal catalysts for heterogeneous catalysis:From single atoms to nanoclusters and nanoparticles[J]. Chemical Revie-ws, 2018, 118(10):4981-5079.
|
[2] |
Somorjai G A, Yang M. The surface science of catalytic selectivi-ty[J]. Topics in Catalysis, 2003, 24(1):61-72.
|
[3] |
Gertl H K, Knözinger H. Handbook of heterogeneous catalysis[M]. New York:Wiley-VCH, 1997:46-48.
|
[4] |
朱利安R.H.罗斯. 多相催化:基本原理与应用[M]. 田野,张立红,赵宜成,等译. 北京: 化学工业出版社, 2016.
|
[5] |
Somorjai G A, Park J Y. Molecular factors of catalytic selectivity[J]. Angewandte Chemie International Edition, 2008, 47:9212-9228.
|
[6] |
Zhang S, Chang C R, Huang Z Q, et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes[J]. Journal of the American Chemical Society, 2016, 138(8):2629-2637.
|
[7] |
Wu B, Zheng N F. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today, 2013, 8:168-197.
|
[8] |
Ye T N, Xiao Z, Li J, et al. Stable single platinum atoms trapped in sub-nanometer cavities in 12CaO·7Al2O3 for chemoselective hydro-genation of nitroarenes[J]. Nature Communications, 2020, 11.Doi: 10.1038/s41467-019-14216-9.
|
[9] |
Serna P, Boronat M, Corma A. Tuning the behavior of Au and Pt cat- alysts for the chemoselective hydrogenation of nitroaromatic compo-unds[J]. Topics in Catalysis, 2011, 54(5/6/7):439-446.
|
[10] |
Corma A, Serna P, Concepción P, et al. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of sub- stituted nitroaromatics[J]. Journal of the American Chemical So-ciety, 2008, 130(27):8748-8753.
|
[11] |
Huang W, Sun G, Cao T. Surface chemistry of group IB metals and related oxides[J]. Chemical Society Reviews, 2017, 46:1977-2000.
|
[12] |
Zhao M, Yuan K, Wang Y, et al. Metal-organic frameworks as se-lectivity regulators for hydrogenation reactions[J]. Nature, 2016, 539:76-80.
|
[13] |
Lu J, Low K B, Lei Y, et al. Toward atomically-precise synjournal of supported bimetallic nanoparticles using atomic layer deposi-tion[J]. Nature Communications, 2014, 5.Doi: 10.1038/ncomms4264.
|
[14] |
Nϕrskov J K, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts[J]. Nature Chemistry, 2009, 1(1):37-46.
|
[15] |
Noyori R. Synthesizing our future[J]. Nature Chemistry, 2009, 1(1):5-6.
|
[16] |
Ertl G. Heterogeneous catalysis on the atomic scale[J]. The Chemi-cal Record, 2001, 1(1):33-45.
|
[17] |
Boudart M. Heterogeneous catalysis by metals[J]. Journal of Molec-ular Catalysis, 1985, 30:27-38.
|
[18] |
Boudart M. Catalysis by supported metals[J]. Advances in Cataly-sis, 1969, 20:153-166.
|
[19] |
Boronat M, Leyva-Pérez A, Corma A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters:Attempts to predict reactivity with clusters and nano-particles of gold[J]. Accounts of Chemical Research, 2014, 47(3):834-844.
|
[20] |
Gerhard E. Heterogeneous catalysis on atomic scale[J]. Journal of Molecular Catalysis A:Chemical, 2002, 182/183:5-16.
|
[21] |
Chen G, Xu C, Huang X, et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts[J]. Nature Materials, 2016, 15:564-569.
|
[22] |
Novotny Z, Argentero G, Wang Z M, et al. Ordered array of single Au adatoms with remarkable thermal stability:Au/Fe3O4(001)[J]. Physical Review Letters, 2012, 108.Doi: 10.1103/PhysRevLett.108.216103.
|
[23] |
Ferguson G A, Yin C R, Kwon G, et al. Stable subnanometer cobalt oxide clusters on ultrananocrystalline diamond and alumina supports:Oxidation state and the origin of sintering resistance[J]. The Journal of Physical Chemistry C, 2012, 116(45):24027-24034.
|
[24] |
Bell A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299:1688-1691.
|
[25] |
Chen M S, Goodman D W. The structure of catalytically active gold on titania[J]. Science, 2004, 306:252-255.
|
[26] |
Hansen T W, DeLaRiva A T, Challa S R, et al. Sintering of catalytic nanoparticles:Particle migration or Ostwald ripening?[J]. Accounts of Chemical Research, 2013, 46(8):1720-1730.
|
[27] |
Sanchez S I, Menard L D, Bram A, et al. The emergence of nonbulk properties in supported metal clusters:Negative thermal expansion and atomic disorder in Pt nanoclusters supported on γ-Al2O3[J]. Journal of the American Chemical Society, 2009, 131(20):7040-7054.
|
[28] |
Yang X F, Wang A Q, Qiao B T, et al. Single-atom catalysts:A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Re-search, 2013, 46(8):1740-1748.
|
[29] |
Bao X H. Fundamental research in catalysis with emphasis on con-finement effects[J]. Scientia Sinica Chimica, 2012, 42(4).Doi: 10.1360/032012-130.
|
[30] |
Li H, Xiao J, Fu Q, et al. Confined catalysis under two-dimensional materials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114:5930-5934.
|
[31] |
Dejong K P, Zecevic J. The platinum tush[J]. Nature Materials, 2017, 16:7-8.
|
[32] |
Corma A, Serna P. Chemoselective hydrogenation of nitro compoun-ds with supported gold catalysts[J]. Science, 2006, 313:332-334.
|
[33] |
Bhogeswararao S, Srinivas D. Intramolecular selective hydrogena-tion of cinnamaldehyde over CeO2-ZrO2 supported Pt catalysts[J]. Journal of Catalysis, 2012, 285:31-40.
|
[34] |
Shi W, Zhang B S, Lin Y M, et al. Enhanced chemoselective hydro-genation through tuning the interaction between Pt nanoparticles and carbon supports:Insights from identical location transmission electron microscopy and X-ray photoelectron spectroscopy[J]. ACS Catalysis, 2016, 6(11):7844-7854.
|
[35] |
Pan H, Li J, Lu J, et al. Selective hydrogenation of cinnamaldehyde with PtFeOx/Al2O3@SBA-15 catalyst:Enhancement in activity and selectivity to unsaturated alcohol by Pt-FeOx and Pt-Al2O3@SBA-15 interaction[J]. Journal of Catalysis, 2017, 354:24-36.
|
[36] |
Shu Y, Chan H C, Xie L, et al. Bimetallic platinum-tin nanoparti-cles on hydrogenated molybdenum oxide for the selective hydro-genation of functionalized nitroarenes[J]. ChemCatChem, 2017, 9:4199-4205.
|
[37] |
Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry, 2018(2):65-81.
|
[38] |
Wang C P, Mao S J, Wang Z, et al. Insight into single-atom-induced unconventional size dependence over CeO2-supported Pt catalys-ts[J]. Chem, 2020, 6(3):752-765.
|
[39] |
Wei H, Liu X, Wang A, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogena-tion of functionalized nitroarenes[J]. Nature Communications, 2014, 5.Doi: 10.1038/ncomms6634.
|
[40] |
Feng H, Lu J L, Stair P C, et al. Alumina over-coating on Pd nano-particle catalysts by atomic layer deposition:Enhanced stability and reactivity[J]. Catalysis Letters, 2011, 141(4):512-517.
|
[41] |
Hu Q, Wang S, Gao Z, et al. The precise decoration of Pt nanopar-ticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde[J]. Applied Catalysis B:Enviro-nmental, 2017, 218:591-599.
|
[42] |
He T W, Zhang C M, Zhang L, et al. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline[J]. Nano Research, 2019, 12(8):1817-1823.
|
[43] |
Cárdenas Lizana F, Hao Y F, Crespo Quesada M, et al. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts:Role of the support[J]. ACS Catalysis, 2013, 3(6):1386-1396.
|
[44] |
Mao S J, Zhao B W, Wang Z, et al. Tuning the catalytic performance for the semi-hydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts[J]. Green Chemistry, 2019, 21:4143-4151.
|
[45] |
曾昭槐. 择形催化[M]. 北京: 中国石化出版社, 1994:145-153.
|
[46] |
Zhang J, Wang L, Shao Y, et al. A Pd@zeolite catalyst for nitroarene arene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores[J]. Angewandte Chemie International Edition, 2017, 56:9747-9751.
|
[47] |
Guo Z Y, Xiao C X, Maligal Ganesh R V, et al. Pt nanoclusters confined within metal-organic framework cavities for chemoselec-tive cinnamaldehyde hydrogenation[J]. ACS Catalysis, 2014, 4(5):1340-1348.
|
[48] |
Li X F, Wang Z, Mao S J, et al. Insight into the role of additives in catalytic synjournal of cyclohexylamine from nitrobenzene[J]. Chinese Journal of Catalysis, 2018, 36:1191-1196.
|
[49] |
Chen Y Z, Kong X Q, Mao S J, et al. Study on the role of alkaline sodium additive in selective hydrogenation of phenol[J]. Chinese Journal of Catalysis, 2019, 40:1516-1524.
|
[50] |
Mao S J, Wang C P, Wang Y, et al. The chemical nature of N doping on N doped carbon supported noble metal catalysts[J]. Journal of Catalysis, 2019, 375:456-465.
|
[51] |
Chen Y Z, Wang Z, Mao S J, et al. Rational design of hydrogenation catalysts using nitrogen-doped porous carbon[J]. Chinese Journal of Catalysis, 2019, 40:971-979.
|
[52] |
Liu J R, Xie L, Wang Z, et al. Biomass-derived ordered mesoporous carbon nano-ellipsoid encapsulated metal nanoparticles inside:Ideal nanoreactors for shape-selective catalysis[J]. Chemical Communications, 2020, 56(2):229-232.
|
[53] |
Jing P, Gan T, Qi H, et al. Synergism of Pt nanoparticles and iron oxide support for chemoselective hydrogenation of nitroarenes un-der mild conditions[J]. Chinese Journal of Catalysis, 2019, 40:214-222.
|
[54] |
Serna P, Concepción P, Corma A. Design of highly active and che-moselective bimetallic gold-platinum hydrogenation catalysts thr-ough kinetic and isotopic studies[J]. Journal of Catalysis, 2009, 265:19-25.
|
[55] |
Chandler B D. An extra layer of complexity[J]. Nature Chemistry, 2017, 9:108-109.
|
[56] |
Dandekar A, Vannice M A. Crotonaldehyde hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI catalysts[J]. Journal of Catalysis, 1999, 183:344-354.
|
[57] |
Concepción P, Corma A, Silvestre Albero J, et al. Chemoselective hydrogenation catalysts:Pt on mesostructured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder[J]. Journal of the American Chemical Society, 2004, 126(17):5523-5532.
|
[58] |
Kennedy G, Baker L R, Somorjai G A. Selective amplification of CO bond hydrogenation on Pt/TiO2:Catalytic reaction and sum-frequ-ency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation[J]. Angewandte Chemie International Edition, 2014, 53:3405-3408.
|
[59] |
Kennedy G, Melaet G, Han H L, et al. In situ spectroscopic investi-gation into the active sites for crotonaldehyde hydrogenation at the Pt nanoparticle-Co3O4 interface[J]. ACS Catalysis, 2016, 6(10):7140-7147.
|