Inorganic Chemicals Industry ›› 2025, Vol. 57 ›› Issue (10): 1-10.doi: 10.19964/j.issn.1006-4990.2025-0054
• Reviews and Special Topics • Next Articles
HOU Ming(
), BAI Ziyu, LIU Ruohan, YIN Chengyang(
)
Received:2025-01-24
Online:2025-10-10
Published:2025-10-27
Contact:
YIN Chengyang
E-mail:houming200204@163.com;ycy2006cc@126.com
CLC Number:
HOU Ming, BAI Ziyu, LIU Ruohan, YIN Chengyang. Research progress on synthesis methods and influencing factors of SAPO-34 molecular sieve[J]. Inorganic Chemicals Industry, 2025, 57(10): 1-10.
Table 1
Synthesis method of nano-SAPO-34 molecular sieve"
| 合成方法 | 原理 | 特点 | 粒径/nm | 优点 | 文献 |
|---|---|---|---|---|---|
| 无溶剂法 | 固体原料在无溶剂条件下充分研磨,加热晶化 | 降低反应体系压力,减少废液排放 | 约100 | 在MTO中对低碳烯烃的选择性较高 | [ |
| 50 | 具有较高的比表面积和中等的酸度 | [ | |||
干凝胶 转化法 | 凝胶缺少液相,传质受限,分子筛成核速度增加,晶体生长速度减缓 | 晶化时间短,合成的分子筛粒径小,尺寸分布窄 | 50~500 | 模板剂消耗量少,产品收率高 | [ |
| 50~90 | 在氯甲烷制烯烃反应中寿命较长 | [ | |||
微波辅助 合成法 | 微波辐照使反应物迅速达到所需温度 | 加热均匀、速度快,合成分子筛纯度高、尺寸均匀 | 130~240 | 硅铝比高、酸位点密度增加 | [ |
| 500 | 样品为纯相,结晶度较高 | [ | |||
| 超声波辅助合成法 | 声空化,气泡破裂加速成核和结晶,阻止颗粒团聚 | 晶化时间短,合成分子筛的颗粒尺寸分布窄 | 15~30 | 结晶度高、比表面积大 | [ |
| 100 | 比表面积增加 | [ |
Table 2
Synthesis methods of multi-level porous SAPO-34 molecular sieve"
| 合成方法 | 原理 | 二次模板剂/后 处理试剂 | 优点 | 缺点 | 文献 |
|---|---|---|---|---|---|
| 硬模板法 | 不溶性硬材 料为模板 | 活性炭 | 比表面积增大,改善多级孔结构 | 需要焙烧,增加能耗 | [ |
| 碳纳米管 | 具有较好的连通性 | 介孔无序 | [ | ||
| 软模板法 | 可溶性有机化合物为模板 | CTAB | 催化剂寿命为常规的3.5倍 | 软模板剂大多价格昂贵且容易污染环境 | [ |
| TPED | 具有较高的比表面积和较低的硅含量 | 软模板剂大多价格昂贵且容易污染环境 | [ | ||
| 酸处理法 | 酸性条件下 去除铝 | 柠檬酸 | 可以顺利合成出多级孔SAPO-34分子筛 | 酸试剂可能腐蚀生产设备管道 | [ |
| 硝酸、草酸和丁二酸 | 酸种类影响介孔、大孔的形成 | 酸试剂很容易腐蚀分子筛框架 | [ | ||
| 碱处理法 | 碱性条件下 去除硅 | NaOH与TPAOH混合溶液 | SAPO-34在开环反应中催化性能提高 | 碱处理产生的废液难以处理 | [ |
| 三乙胺 | 可以顺利合成出多级孔SAPO-34分子筛 | 碱溶液刻蚀过度会导致骨架坍塌 | [ | ||
| 氟化物刻蚀法 | HF2-同时刻 蚀硅和铝 | HF、NH4F | 具有碳沉积速率慢、活性利用率高的特点 | HF毒性与腐蚀性较强,刻蚀过程难以控制 | [ |
Table 3
Influencing factors and mechanisms of synthesis of SAPO-34 molecular sieve"
| 影响因素 | 具体类别 | 特征 | 影响机理 | 文献 | |
|---|---|---|---|---|---|
| 原料组成与配比 | 硅源 | SiO2纳米粉 | 结晶度高,颗粒均匀 | SiO2纳米粉高比表面积和均匀粒径有利于均匀分子筛结构形成 | |
| 硅溶胶 | 结晶度低,晶粒较小 | 硅溶胶的胶体特性导致分子筛前驱体不均匀分布 | [ | ||
| TEOS | 结晶度低,存在无定形物 | TEOS在水解过程中形成无定形硅胶,影响分子筛结晶 | |||
| 铝源 | 拟薄水铝石 | 比表面积大,酸密度适宜 | 拟薄水铝石的小粒径有助于形成高比表面积的分子筛,促进酸性位点的均匀分布 | [ | |
n(SiO2)/n(Al2O3)和 n(H2O)/n(Al2O3) | 低物质的量比易形成SAPO-5杂质 | 低物质的量比可能导致铝源过量,形成杂质相,影响样品纯度 | [ | ||
| 模板剂 | 模板剂 种类 | DEA、TEAOH | SAPO-34-TEAOH在甲醇氨化反应中催化活性较低 | SAPO-34-TEAOH晶体尺寸小,晶体表面酸浓度高 | [ |
模板剂 用量 | n(Mor)/ n(TEAOH) | 比值为4时在MTO反应中催化寿命最长 | 比值为4时样品具有较大的比表面积和中等的酸密度,在催化反应中具有较多的活性位点 | [ | |
| 晶种 | 晶种 添加量 | 0~0.5% >1% | 产品收率显著提高 影响趋于平缓 | 适量的晶种能作为成核中心,促进分子筛的结晶 过量的晶种可能导致晶体生长过快,影响晶体质量 | [ |
| 晶化条件 | 晶化时间 | 12、24、36 h | 24 h时相对结晶度最高 | 晶化时间过短,晶体生长不完全;晶化时间过长,晶体过度生长或聚集 | [ |
| [1] | YU Wenhe, WU Xiaowen, CHENG Bohao,et al.Synthesis and applications of SAPO-34 molecular sieves[J].Chemistry:A European Journal,2022,28(11):e202102787. |
| [2] | RIMAZ S, KOSARI M, ZARINEJAD M,et al.A comprehensive review on sustainability-motivated applications of SAPO-34 molecular sieve[J].Journal of Materials Science,2022,57(2):848- 886. |
| [3] | 王男,魏迎旭,刘中民.甲醇制烯烃反应中的凝聚态化学[J].化学进展,2023,35(6):839-860. |
| WANG Nan, WEI Yingxu, LIU Zhongmin.Methanol to olefins (MTO):A condensed matter chemistry[J].Progress in Chemistry,2023,35(6):839-860. | |
| [4] | SHEN Xuefeng, DING Jiajia, YE Yingchun,et al.Ingrown leading to hierarchical SAPO-34 with high catalytic activity[J].Chemistry:Methods,2025,5(2):e202400027. |
| [5] | WANG Qunfei, GAO Zhaojun, DING Zhaoyi,et al.Effect of Kaolin calcined temperature on the preparation and crystallization mechanism of SAPO-34 molecular sieve for methanol-to-olefins performance[J].Microporous and Mesoporous Materials,2024,369:113037. |
| [6] | LI Meng, WANG Yihui, BAI Lu,et al.Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process[J].Applied Catalysis A:General,2017,531:203-211. |
| [7] | WANG Ting, YANG Chengguang, LI Shenggang,et al.Solvent-free synthesis of Mg-incorporated nanocrystalline SAPO-34 zeolites via natural clay for chloromethane-to-olefin conversion[J].ACS Sustainable Chemistry & Engineering,2020,8(10):4185-4193. |
| [8] | LI Zhihong, LI Xiaofeng, DI Chunyu,et al.A green and cost-effective synthesis of hierarchical SAPO-34 through dry gel conversion and its performance in a methanol-to-olefin reaction[J].Industrial & Engineering Chemistry Research,2021,60(43):15380-15390. |
| [9] | ZHENG Jingwei, JIN Dongliang, LIU Zhiting,et al.Synthesis of nanosized SAPO-34 via an azeotrope evaporation and dry gel conversion route and its catalytic performance in chloromethane conversion[J].Industrial & Engineering Chemistry Research,2018,57(2):548-558. |
| [10] | ALAM S F, KIM M Z, REHMAN A U,et al.Synthesis of SAPO-34 nanoplates with high Si/Al ratio and improved acid site density[J].Nanomaterials,2021,11(12):3198. |
| [11] | WANG Bin, SUN Chaoshu, ZHOU Rongfei,et al.A super-permeable and highly-oriented SAPO-34 thin membrane prepared by a green gel-less method using high-aspect-ratio nanosheets for efficient CO2 capture[J].Chemical Engineering Journal,2022,442:136336. |
| [12] | ASKARI S, BASHARDOUST SIAHMARD A, HALLADJ R,et al.Different techniques and their effective parameters in nano SAPO-34 synthesis:A review[J].Powder Technology,2016,301:268-287. |
| [13] | AZARHOOSH M J, HALLADJ R, ASKARI S,et al.Performance analysis of ultrasound-assisted synthesized nano-hierarchical SAPO-34 catalyst in the methanol-to-lights-olefins process via artificial intelligence methods[J].Ultrasonics Sonochemistry,2019,58:104646. |
| [14] | MORADIYAN E, HALLADJ R, ASKARI S.Beneficial use of ultrasound in rapid-synthesis of SAPO-34/ZSM-5 nanocomposite and its catalytic performances on MTO reaction[J].Industrial & Engineering Chemistry Research,2018,57(6):1871-1882. |
| [15] | EBADINEZHAD B, HAGHIGHI M.Texture evolution of mesoporous SAPO-34 via a hard-templating sono-hydrothermal method for biodiesel production:Influence of carbon materials on nanocatalyst design[J].Applied Catalysis A:General,2020,595:117486. |
| [16] | EBRAHIMI A, HAGHIGHI M, AGHAMOHAMMADI S.Sono-precipitation fabrication of ZnO over modified SAPO-34 zeotype for effective degradation of methylene blue pollutant under simulated solar light illumination[J].Process Safety and Environmental Protection,2022,165:307-322. |
| [17] | SCHMIDT F, PAASCH S, BRUNNER E,et al.Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J].Microporous and Mesoporous Materials,2012,164:214-221. |
| [18] | Yongyong NAN, MA Shizi, ZHA Fei,et al.Facile surfactant-assisted synthesis of nanosheet-like mesoporous SAPO-34 zeolites and catalysis performance for methanol to olefins[J].Reaction Kinetics,Mechanisms and Catalysis,2022,135(4):1987-1998. |
| [19] | SUN Chao, ZHAO Aijuan, WANG Yaquan,et al.Organosilane-assistant synthesis of hierarchical SAPO-34 aggregates with superior MTO performance[J].Microporous and Mesoporous Materials,2021,310:110619. |
| [20] | ZHENG Tao, LIU Haiyan, HE Peng,et al.Post synthesis of hierarchical SAPO-34 via citric acid etching:Mechanism of selective desilication[J].Microporous and Mesoporous Materials,2022,335:111798. |
| [21] | REN Shu, LIU Guojuan, WU Xian,et al.Enhanced MTO performance over acid treated hierarchical SAPO-34[J].Chinese Journal of Catalysis,2017,38(1):123-130. |
| [22] | PRAJAPATI R, JADAV D, PANDEY M,et al.Synthesis of hierarchical silicoaluminophosphate(SAPO) molecular sieves by post-synthetic modification and their catalytic application[J].European Journal of Inorganic Chemistry,2022,2022(18):e202200185. |
| [23] | ZHU Yingliang, DAI Haowen, DUAN Ying,et al.Excellent methanol to olefin performance of SAPO-34 crystal deriving from the mixed micropore,mesopore,and macropore architectu-re[J].Crystal Growth & Design,2020,20(4):2623-2631. |
| [24] | 郭红,赵增典,高晓亮,等.硅源与磷源对合成SAPO-34分子筛结构和形貌的影响[J].硅酸盐通报,2017,36(5):1801-1805. |
| GUO Hong, ZHAO Zengdian, GAO Xiaoliang,et al.Influence of different silicon source and phosphoric source on the structure and morphology of small gain SAPO-34 molecular sieves[J].Bulletin of the Chinese Ceramic Society,2017,36(5):1801-1805. | |
| [25] | 梁光华,狄春雨,王龙,等.不同铝源合成SAPO-34分子筛及其MTO催化性能[J].石油学报(石油加工),2014,30(5):885-890. |
| LIANG Guanghua, DI Chunyu, WANG Long,et al.Effect of aluminum sources on the synthesis of SAPO-34 and its catalytic properties for MTO reaction[J].Acta Petrolei Sinica(Petroleum Processing Section),2014,30(5):885-890. | |
| [26] | RAHIMI K, TOWFIGHI J, SEDIGHI M,et al.The effects of SiO2/Al2O3 and H2O/Al2O3 molar ratios on SAPO-34 catalysts in methanol to olefins(MTO) process using experimental design[J].Journal of Industrial and Engineering Chemistry,2016,35:123-131. |
| [27] | LIU Zhao, WANG Quanyi, LIU Shiping,et al.Synthesis of SAPO-34 by utilizing spent industrial MTO catalyst and their catalytic applications[J].Materials Today Sustainability,2023,21:100302. |
| [28] | ZHANG Ding, ZHOU Yang, CHU Ruizhi,et al.Research on double template agents to regulate the grain growth behavior of SAPO-34[J].Microporous and Mesoporous Materials,2023,349:112428. |
| [29] | 张强,马晓月,刘璐.晶种存在形态对所合成的SAPO-34分子筛性质及其甲醇转化催化性能的影响[J].燃料化学学报,2018,46(10):1225-1230. |
| ZHANG Qiang, MA Xiaoyue, LIU Lu.Effect of seed form on the structure and properties of as-synthesized SAPO-34 molecular sieves and their catalytic performance in the conversion of methanol to olefins[J].Journal of Fuel Chemistry and Technology,2018,46(10):1225-1230. | |
| [30] | 郭智慧,朱伟平,郭磊.晶种对合成小晶粒SAPO-34分子筛的影响[J].石油炼制与化工,2022,53(9):56-64. |
| GUO Zhihui, ZHU Weiping, GUO Lei.Effect of seed crystals on hydrothermal systhesis of sapo-34 with small particle size[J].Petroleum Processing and Petrochemicals,2022,53(9):56-64. | |
| [31] | VERKI M T, HALLADJ R, HABIBZADEH S,et al.Crystallization and particle size distribution of hydrothermally synthesized SAPO-34:An experimental and population balance study[J].Scientific Reports,2025,15:6301. |
| [32] | KIANFAR E.Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins[J].Petroleum Chemistry,2021,61(4):527- 537. |
| [33] | YANG Guoju, HAN Ji, HUANG Yujun,et al.Busting the efficiency of SAPO-34 catalysts for the methanol-to-olefin conversion by post-synthesis methods[J].Chinese Journal of Chemical Engineering,2020,28(8):2022-2027. |
| [34] | 陈旭,杨刚,李海涛.多级孔纳米SAPO-34分子筛制备及甲醇制烯烃性能研究[J].无机盐工业,2024,56(1):134-140. |
| CHEN Xu, YANG Gang, LI Haitao.Study on preparation of multistage pore nano-SAPO-34 molecular sieves and its methanol to olefin performance[J].Inorganic Chemicals Industry,2024,56(1):134-140. | |
| [35] | 申学峰,丁佳佳,刘红星.以两亲性单季铵盐分子为模板剂合成的多级孔SAPO-34分子筛[J].无机化学学报,2023,39(11):2065-2073. |
| SHEN Xuefeng, DING Jiajia, LIU Hongxing.Hierarchical SAPO-34 templated by amphiphilic single-quaternary-ammonium surfactants[J].Chinese Journal of Inorganic Chemistry,2023,39(11):2065-2073. | |
| [36] | WU Jiaxin, DAI Mingzhi, YANG Bangming,et al.The effect of hierarchical pore structure SAPO-34 catalyst on the diffusion and reaction behavior in MTO reaction[J].Chemical Engineering Journal,2024,482:148947. |
| [37] | Meng LYU, YANG Chengguang, LIU Ziyu,et al.Atmospheric pressure synthesis of nano-scale SAPO-34 catalysts for effective conversion of methanol to light olefins[J].Sustainable Energy & Fuels,2019,3(11):3101-3108. |
| [38] | JIN Wenlong, WANG Baojie, Pengfei TUO,et al.Selective desilication,mesopores formation,and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34[J].Industrial & Engineering Chemistry Research,2018,57(12):4231-4236. |
| [39] | SALIH H, MURAZA O, ABUSSAUD B,et al.Catalytic enhancement of SAPO-34 for methanol conversion to light olefins using in situ metal incorporation[J].Industrial & Engineering Chemistry Research,2018,57(19):6639-6646. |
| [40] | ZHONG Jiawei, HAN Jingfeng, WEI Yingxu,et al.Catalysts and shape selective catalysis in the methanol-to-olefin(MTO) reaction[J].Journal of Catalysis,2021,396:23-31. |
| [41] | 安怀清,周吉彬,张今令,等.再生时间对甲醇制烯烃催化剂水蒸气再生过程的影响[J].化工进展,2022,41(1):221-226. |
| AN Huaiqing, ZHOU Jibin, ZHANG Jinling,et al.Effect of regeneration time on steam regeneration of spent catalyst in methanol to olefins process[J].Chemical Industry and Engineering Progress,2022,41(1):221-226. | |
| [42] | ZHONG Jiawei, HAN Jingfeng, WEI Yingxu,et al.Enhancing ethylene selectivity in MTO reaction by incorporating metal species in the cavity of SAPO-34 catalysts[J].Chinese Journal of Catalysis,2018,39(11):1821-1831. |
| [43] | WANG Chang, YANG Liu, GAO Mingbin,et al.Directional construction of active naphthalenic species within SAPO-34 crystals toward more efficient methanol-to-olefin conversion[J].Journal of the American Chemical Society,2022,144(46):21408-21416. |
| [44] | YANG Liu, WANG Chang, ZHANG Lina,et al.Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion[J].Nature Communications,2021,12:4661. |
| [45] | CHEN Chuanmin, CAO Yue, LIU Songtao,et al.Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J].Chinese Journal of Catalysis,2018,39(8):1347-1365. |
| [46] | 殷成阳,侯铭,杨爽,等.过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J].化工进展,2023,42(6):2963-2974. |
| YIN Chengyang, HOU Ming, YANG Shuang,et al.Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts[J].Chemical Industry and Engineering Progress,2023,42(6):2963-2974. | |
| [47] | YUAN Yuheng, GUAN Bin, CHEN Junyan,et al.Research status and outlook of molecular sieve NH3-SCR catalysts[J].Molecular Catalysis,2024,554:113846. |
| [48] | SUN Lijing, YANG Miao, CAO Yi,et al.A reconstruction strategy for the synthesis of Cu-SAPO-34 with excellent NH3-SCR catalytic performance and hydrothermal stability[J].Chinese Journal of Catalysis,2020,41(9):1410-1420. |
| [49] | XIANG Xiao, WU Pengfei, CAO Yi,et al.Investigation of low-temperature hydrothermal stability of Cu-SAPO-34 for selective catalytic reduction of NO x with NH3 [J].Chinese Journal of Catalysis,2017,38(5):918-927. |
| [50] | MI Yangyang, LI Gang, ZHENG Yuling,et al.Insights into novel mesoporous Cu-SAPO-34 with enhanced deNO x performance for diesel emission control[J].Microporous and Mesoporous Materials,2021,323:111245. |
| [51] | WANG Xiaofeng, QIN Mengyue, XU Yang,et al.Improvement of Cu-SAPO-34 hydrothermal stability by tuning P/Al ratio for selective catalytic reduction of NO by NH3 [J].Journal of Colloid and Interface Science,2023,638:686-694. |
| [52] | HOU Jia, ZHONG Chengming, YIN Chengyang,et al.Effect of various templates-assisted Cu ion incorporation into SAPO-34 on low-temperature hydrothermal durability for NH3-SCR reaction[J].Fuel,2024,369:131717. |
| [53] | CHEN Zhen, BIAN Ce, FAN Chi,et al.The role of Si coordination structures in the catalytic properties and durability of Cu-SAPO-34 as NH3-SCR catalyst for NO x reduction[J].Chinese Chemical Letters,2022,33(2):893-897. |
| [54] | XIAO Xia, XU Zhongliang, WANG Peng,et al.Solvent-free synthesis of SAPO-34 zeolite with tunable SiO2/Al2O3 ratios for efficient catalytic cracking of 1-butene[J].Catalysts,2021,11(7):835. |
| [55] | GUO Yanni, SU Zhuojun, MAO Wei,et al.Catalytic behavior of aluminum-modified SAPO-34 catalysts for reducing the energy penalty of CO2-rich amine solutions regeneration[J].Separation and Purification Technology,2025,353:128327. |
| [56] | WANG Sen, ZHANG Li, WANG Pengfei,et al.Highly effective conversion of CO2 into light olefins abundant in ethene[J].Chem,2022,8(5):1376-1394. |
| [57] | ZHANG Peng, MA Lixuan, MENG Fanhui,et al.Boosting CO2 hydrogenation performance for light olefin synthesis over GaZrO x combined with SAPO-34[J].Applied Catalysis B:Environmental,2022,305:121042. |
| [1] | ZHU Zenghu, WANG Min, PENG Zhengjun, JIA Guofeng, LI Yan. Study on adsorption of potassium ions in lithium chloride solution [J]. Inorganic Chemicals Industry, 2024, 56(6): 61-66. |
| [2] | ZHAO Chuang, CHEN Zihao, ZHANG Boyu, LI Ben, JIN Fengying, LI Bin, SUN Zhenhai, GUO Chunlei. Study on adsorption and separation performance of molecular sieve adsorbents for different types of diesel [J]. Inorganic Chemicals Industry, 2024, 56(3): 80-85. |
| [3] | FENG Qing, WANG Yansu, ZHOU Wei, LIU Yang, SUN Yanmin, NAN Jun. Research progress on catalysts for relay-catalysis of CO2 to prepare high value-added chemicals [J]. Inorganic Chemicals Industry, 2024, 56(11): 81-94. |
| [4] | CHEN Xu, YANG Gang, LI Haitao. Study on preparation of multistage pore nano-SAPO-34 molecular sieves and its methanol to olefin performance [J]. Inorganic Chemicals Industry, 2024, 56(1): 134-140. |
| [5] | YAN Zhen, QIU Zhaofu, JIN Xibiao, WANG Yuan, LIU Chang, YANG Ji. Study on 4A molecular sieve loaded with Ce and γ-Fe2O3 for removal of Sb(Ⅲ) and Sb(Ⅴ) in water [J]. Inorganic Chemicals Industry, 2024, 56(1): 81-89. |
| [6] | XIONG Xiaoyun, CAO Gengzhen, DU Xuemin, WANG Jiujiang, HU Qingxun. Preparation of macroporous in situ crystallized FCC catalyst by carbon black template method [J]. Inorganic Chemicals Industry, 2023, 55(9): 134-139. |
| [7] | ZHOU Shiqi, WANG Tao, JING Fangli, LUO Shizhong. Study on performance of magnesium nitrate-modified carbon molecular sieve for separation of nitrogen/methane [J]. Inorganic Chemicals Industry, 2023, 55(9): 75-80. |
| [8] | BA Yude,ZHOU Shiqi,JING Fangli,LUO Shizhong. Study on performance of nitrogen/methane separation on iron ions modified carbon molecular sieve [J]. Inorganic Chemicals Industry, 2023, 55(1): 144-150. |
| [9] | JI Chao,WU Luming,LI Bin,ZANG Jiazhong,YU Haibin. Research progress on modification of SAPO-34 as catalyst for methanol to olefins [J]. Inorganic Chemicals Industry, 2022, 54(7): 1-9. |
| [10] | LU Jing,CHEN Zhiping,LI Jianwei,QU Ying,ZHOU Wenwu,YANG Zhiyuan,ZHOU Anning. Synthesis and characterization of silicoaluminophosphate molecular sieve from illite [J]. Inorganic Chemicals Industry, 2022, 54(5): 144-150. |
| [11] | WANG Yinzhong,QIN Dongling,YANG Gang. Study on preparation of hierarchical ZSM-5/SAPO-34 composite molecular sieve and its MTO performance [J]. Inorganic Chemicals Industry, 2022, 54(3): 119-124. |
| [12] | ZHANG Xinyi,DI Yuli,DONG Qi,CHEN Xingyu,ZHANG Zhengdong. Research progress on preparation of Li3V2(PO4)3 cathode material for lithium-ion batteries [J]. Inorganic Chemicals Industry, 2022, 54(3): 38-44. |
| [13] | MAN Qinghong,HUANG He,ZHAO Yuqi,WANG Xiangming. Research progress of application of silica sol in synthesis of molecular sieve catalyst [J]. Inorganic Chemicals Industry, 2022, 54(12): 28-33. |
| [14] | SHI Kai,ZHAO Xu,ZHANG Hongzhi,REN Yixuan,LI Xiaofeng. Study on synthesis of SAPO-34 molecular sieve by silicon-modified pseudo-boehmite [J]. Inorganic Chemicals Industry, 2022, 54(10): 149-154. |
| [15] | Liu Xingyu,Jia Yuanyuan,Wu Shufeng,Tang Zhonghua,Zhang Peng,Liu Junqiang,Pu Xin. Research progress of Ce-based SCR denitration catalysts [J]. Inorganic Chemicals Industry, 2021, 53(8): 15-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297