Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (4): 123-127.doi: 10.19964/j.issn.1006-4990.2021-0397
• Industrial Techniques • Previous Articles Next Articles
LIU Zhuang1(),AN Jimin2,LI Yongjun1,CHEN Xing1,ZHAO Yigang1,ZHAI Ruiguo2(
)
Received:
2021-07-02
Online:
2022-04-10
Published:
2022-04-18
Contact:
ZHAI Ruiguo
E-mail:495465929@qq.com;zrg-wait1986@163.com
CLC Number:
LIU Zhuang,AN Jimin,LI Yongjun,CHEN Xing,ZHAO Yigang,ZHAI Ruiguo. Effect of impurity in alkaline washing oxidation process on crystal size of sodium sulfate[J]. Inorganic Chemicals Industry, 2022, 54(4): 123-127.
Table 1
Technical index requirements for anhydrous Na2SO4 products and industrial anhydrous Na2SO4(GB/T 6009—2014)"
项目 | w (Na2SO4)/ % | w (水不溶 物)/% | w [钙和镁 (以Mg计)]/ % | w [氯化 物(以Cl 计)]/% | w [铁 (Fe)]/% | w (水分)/ % | 白度 (R457)/ % | pH(50 g/L 水溶液, 25 ℃) | w (Na2SO3)/ % | w (Na2CO3)/ % | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
无水Na2SO4 | 86.3 | 0.08 | — | 0.03 | 0.035 | 0.57 | 65 | 8.6 | 11.5 | 0.6 | ||
指 标 | Ⅱ类 | 一等品 | ≥98.0 | ≤0.10 | ≤0.30 | ≤0.70 | ≤0.010 | ≤0.50 | 82 | — | ||
合格品 | ≥97.0 | ≤0.20 | ≤0.40 | ≤0.90 | ≤0.040 | ≤1.0 | — | — | ||||
Ⅲ类 | 一等品 | ≥95.0 | — | ≤0.60 | ≤2.0 | — | ≤1.5 | — | — | |||
合格品 | ≥92.0 | — | — | — | — | — | — |
Table 3
Particle size distribution of products with different iron contents"
杂质Fe含 量/(mg·L-1) | 质量分数/% | 平均粒径/ μm | |||||||
---|---|---|---|---|---|---|---|---|---|
<75 μm | 75~125 μm | 125~150 μm | 150~212 μm | 212~300 μm | 300~425 μm | 425~600 μm | 600~850 μm | ||
0 | 2.32 | 5.98 | 6.39 | 13.11 | 25.11 | 27.98 | 19.01 | 0.10 | 303.23 |
11.1,无沉淀 | 3.78 | 8.54 | 7.01 | 12.76 | 21.33 | 29.56 | 17.02 | 0.00 | 291.68 |
20.0,有沉淀 | 7.21 | 11.57 | 12.05 | 13.56 | 18.87 | 34.43 | 2.31 | 0.00 | 240.34 |
50.0,有沉淀 | 8.11 | 11.72 | 13.25 | 12.27 | 17.89 | 35.44 | 1.32 | 0.00 | 236.22 |
Table 5
Particle size distribution of products with different impurity(Na2SO3) contents"
组成 | 质量分数/% | 平均粒径/ μm | |||||||
---|---|---|---|---|---|---|---|---|---|
<75 μm | 75~125 μm | 125~150 μm | 150~212 μm | 212~300 μm | 300~425 μm | 425~600 μm | 600~850 μm | ||
Na2SO4 20.0% | 2.32 | 5.98 | 6.39 | 13.11 | 25.11 | 27.98 | 19.01 | 0.10 | 303.23 |
Na2SO4 15.0%,Na2SO3 5.0% | 11.55 | 25.34 | 11.23 | 8.22 | 12.86 | 28.26 | 2.54 | 0.00 | 208.37 |
Na2SO4 20.0%,Na2SO3 5.0% | 10.88 | 17.95 | 20.66 | 9.12 | 11.65 | 17.96 | 11.78 | 0.00 | 222.25 |
Table 7
Particle size distribution of products with different sample treatment methods"
样品处理方式 | 质量分数/% | 平均粒径/ μm | |||||||
---|---|---|---|---|---|---|---|---|---|
<75 μm | 75~125 μm | 125~150 μm | 150~212 μm | 212~300 μm | 300~425 μm | 425~600 μm | 600~850 μm | ||
样品20.0%,无处理 | 23.65 | 24.56 | 26.32 | 11.89 | 8.91 | 4.65 | 0.02 | 0.00 | 130.91 |
过滤除铁沉淀 | 18.56 | 21.83 | 30.11 | 12.65 | 10.40 | 5.43 | 1.02 | 0.00 | 144.62 |
氧化Na2SO3 | 8.79 | 13.99 | 14.12 | 13.23 | 13.22 | 24.11 | 12.54 | 0.00 | 246.16 |
Table 9
Anhydrous Na2SO4 product components before and after renovation project"
项目 | w (Na2SO4)/% | w(水不 溶物)/% | w[钙和镁 (以Mg计)]/% | w[氯化物 (以Cl计)]/% | w [铁(Fe)]/% | w (水分)/% | 白度 (R457)/% | pH(50 g/L水 溶液,25℃) | w (Na2SO3)/% | w (Na2CO3) /% |
---|---|---|---|---|---|---|---|---|---|---|
改造前 | 86.3 | 0.08 | — | 0.03 | 0.035 | 0.57 | 65 | 8.6 | 11.5 | 0.6 |
改造后 | 98.4 | 0.09 | — | 0.03 | 0.005 | 0.42 | 82 | 7.5 | 0.5 | 0.4 |
Table 10
Particle size distribution of anhydrous Na2SO4 products and industrial anhydrous Na2SO4 before and after renovation project"
组成 | 质量分数/% | 平均粒径/ μm | |||||||
---|---|---|---|---|---|---|---|---|---|
<75 μm | 75~125 μm | 125~150 μm | 150~212 μm | 212~300 μm | 300~425 μm | 425~600 μm | 600~850 μm | ||
改造前无水Na2SO4 | 28.11 | 49.76 | 8.21 | 5.87 | 5.01 | 2.61 | 0.43 | 0.00 | 106.71 |
改造后无水Na2SO4 | 13.98 | 44.33 | 18.76 | 11.49 | 7.35 | 3.97 | 0.12 | 0.00 | 129.99 |
工业无水Na2SO4 | 7.78 | 41.20 | 26.54 | 21.58 | 2.65 | 0.25 | 0.00 | 0.00 | 127.36 |
[1] | 陆操, 程荫东. 无水硫酸钠生产、消费及对策[J]. 无机盐工业, 1992(3):14-17. |
[2] | 李淑萍. 大颗粒无水硫酸钠结晶工艺及数学模型研究[D]. 太原:华北工学院, 2001. |
[3] | 廖恩鑫, 陈丽芳, 张泽亚, 等. 硫酸钠与氯化钾制备硫酸钾实验研究[J]. 无机盐工业, 2020, 52(10):106-109. |
[4] | 谢明胜, 卫锋, 王爱广. 颗粒状无水硫酸钠的生产[J]. 无机盐工业, 2003, 35(6):30-31. |
[5] | 刘云琴. 元明粉结块原因及防止方法的探讨[J]. 无机盐工业, 2001, 33(2):28-29. |
[6] | 唐娜, 白丽荣, 沙作良, 等. 添加剂对硫酸钠晶体粒度的影响[J]. 盐业与化工, 2007, 36(6):1-3. |
[7] | 黄欣, 陈业钢, 苏楠楠, 等. 高盐废水分质结晶及资源化利用研究进展[J]. 化学工业与工程, 2019, 36(1):10-23. |
[8] | 裴旭东, 陈卫红, 李朝恒. 煤化工废水中硫酸钠-氯化钠-硝酸钠分离工艺研究[J]. 工业水处理, 2020, 40(1):63-66. |
[9] | 雷少成, 李玉林. DTNF膜对煤化工HERO高盐废水的分盐实验研究[J]. 无机盐工业, 2020, 52(9):84-87. |
[10] |
BHARMORIA P, GEHLOT P S, GUPTA H, et al. Temperaturedependent solubility transition of Na2SO4 in water and the effect of NaCl therein:solution structures and salt water dynamics[J]. Journal of Physical Chemistry B, 2014, 118(44):12734-12742.
doi: 10.1021/jp507949h |
[11] | 张峰榛, 张孝果, 杨虎, 等. 硫酸钠废水真空蒸发结晶脱盐性能研究[J]. 天然气化工:C1化学与化工, 2019, 44(3):49-52. |
[12] | 许莉, 丁成荣. 铁离子杂质对过硫酸钠结晶过程的影响[J]. 精细化工, 2001, 18(9):547-549. |
[13] |
ZENG G, LI H, LUO S, et al. Effects of ultrasonic radiation on induction period and nucleation kinetics of sodium sulfate[J]. Korean Journal of Chemical Engineering, 2014, 31(5):807-811.
doi: 10.1007/s11814-013-0290-6 |
[14] |
SU N, WANG Y, YAN X, et al. Mechanism of influence of organic impurity on crystallization of sodium sulfate[J]. Industrial & Engineering Chemistry Research, 2018, 57(5):1705-1713.
doi: 10.1021/acs.iecr.7b04625 |
[15] | 曾桂生, 李慧, 王贤勇. 无水硫酸钠结晶热力学及介稳区宽度研究[J]. 南昌航空大学学报:自然科学版, 2012, 26(4):66-70. |
[16] | 丁爱娟. 亚熔盐法粉煤灰提铝清洁工艺硫行为研究[D]. 北京:北京化工大学, 2013. |
[17] | 侯长军, 霍丹群, 唐晓萍. 结晶添加剂对硫酸钾结晶过程影响研究[J]. 海湖盐与化工, 2002, 31(2):20-24. |
[18] | 丁绪淮, 谈遒. 工业结晶[M]. 北京: 化学工业出版社, 1985:74-132. |
[19] | 科尔索夫. 定量化学分析[M]. 南京化工学院分析化学教研组译. 北京: 人民教育出版社, 1981:234-235. |
[1] | HU Dian, GUO Ze, ZHANG Hanquan, LU Manman. Research on effects of roasting process and typical impurities on reduction and decomposition process of phosphogypsum [J]. Inorganic Chemicals Industry, 2024, 56(7): 88-95. |
[2] | WANG Lijuan, YAN Kezhou, GUO Zhiqiang, ZHAO Zhonghe, GUO Yanxia, CHENG Fangqin. Preparation of poly-aluminum chloride from acid leaching liquor of red mud-coal gangue activated by sodium salt [J]. Inorganic Chemicals Industry, 2023, 55(4): 76-83. |
[3] | WU Hao,LI Xi,ZHANG Jun,DUAN Siyu. Study on impurity removal process of prereduction-oxalic acid precipitation in stainless steel coloring ageing liquid [J]. Inorganic Chemicals Industry, 2023, 55(2): 119-125. |
[4] | ZHU Wanye,TANG Ding,CHI Heting,LIAO Xianghui,ZHUANG Rongchuan,WANG Qiankun,SHEN Qingfeng. Study on impurity removal rule of ferrous sulfate from by-product of titanium dioxide by crystallization purification [J]. Inorganic Chemicals Industry, 2022, 54(7): 105-109. |
[5] | GU Qingshan,LIN Xihua,Zhao Shihao,YUAN Yijin. Effect of different pretreatment processes on properties of phosphogypsum [J]. Inorganic Chemicals Industry, 2022, 54(4): 17-23. |
[6] | Wu Zhaoyang, Zhang Yongxing, Zhang Lizhen, Zhang Xiufeng. Effect of phase composition and impurity content of β-gypsum on its properties [J]. Inorganic Chemicals Industry, 2021, 53(9): 67-71. |
[7] | Tan Bo,Liu Xianghuan,Liu Xudong,Yi Meigui. Study on law of lithium extraction and impurity removal from spodumene leaching solution [J]. Inorganic Chemicals Industry, 2021, 53(4): 56-60. |
[8] | An Xiaoying,Huang Wengfang,Wang Zhengli,Peng Yihua,Ye Jiasheng,Li Ming,Lai Xiaoli. Discussion on determination method of zinc constant in waste chemicals [J]. Inorganic Chemicals Industry, 2021, 53(3): 84-86. |
[9] | Cao Liqiong,Zhang Xiaoxi,Wu Lixiang,Cheng Huaigang,Cheng Fangqin. Experimental investigation of floating phenomenon of carnalliti NaCl in direct flotation process of KCl [J]. Inorganic Chemicals Industry, 2020, 52(7): 26-29. |
[10] | Han Longnian,Xin Jing,Zhang Ping,Chen Yufei,Fan Wenxuan,Wei Linlin. Analysis of impurity deposition on guard catalyst for diesel hydrocracking device [J]. Inorganic Chemicals Industry, 2020, 52(12): 113-117. |
[11] | Huang Zhong,Yu Shuangqiang,Gao Kaiyuan,He Jun,Huang He,Zhang Xianfeng,Chen Xizhen. Study on process technology of preparing NH4F and co-producing MgF2 with high impurity fluosilicic acid [J]. Inorganic Chemicals Industry, 2020, 52(10): 110-116. |
[12] | Fan Tianbo,Jiang Yu,Chen Si,You Gang,Ding Ke,Sun Xiaojun,Liu Luping,Li Li,Liu Yunyi,Hu Kaizhou,Ma Junru,Guo Xiyao. Application of TRIZ theory in preparation of magnesium hydroxide by light burning ammonia [J]. Inorganic Chemicals Industry, 2019, 51(5): 23-27. |
[13] | LIU Qiu-Bin, CHEN Yi, WU Bo-Rong, CHEN Fei-Biao. Study on preparing high purity manganese chloride from electrolytic manganese powder [J]. INORGANICCHEMICALSINDUSTRY, 2016, 48(6): 20-. |
[14] | LI Xue, ZHANG Ying, HOU Rui, ZHANG Yan, LIU Yun-Yi. Influence of impurity ions on magnesium hydroxide product in ammonia-evaporation refined solution [J]. INORGANICCHEMICALSINDUSTRY, 2016, 48(10): 23-. |
[15] | WANG Yuan-Wang, YANG Ming-Ping, YAO Mao-Sheng, WANG Yuan-Hong. Study on preparation technology of high purity potassium metavanadate [J]. INORGANICCHEMICALSINDUSTRY, 2016, 48(10): 40-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297