Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (3): 59-65.doi: 10.19964/j.issn.1006-4990.2021-0352
• Research & Development • Previous Articles Next Articles
WANG Dian1,2,3,4(),SU Qiong1,2,4,PANG Shaofeng1,2,3,4,CAO Shijun1,2,3,4,KANG Lihui1,2,3,4,LIANG Lichun1,2,3,4,WANG Yanbin1,2,3,4(
),LI Zhaoxia1,2,3(
)
Received:
2021-05-31
Online:
2022-03-10
Published:
2022-03-18
Contact:
WANG Yanbin,LI Zhaoxia
E-mail:1458123231@qq.com;ybwang@126.com;zhaoxia_90dong@163.com
CLC Number:
WANG Dian,SU Qiong,PANG Shaofeng,CAO Shijun,KANG Lihui,LIANG Lichun,WANG Yanbin,LI Zhaoxia. Study on high-performance supercapacitors based on Fe2O3/biomass carbon composites[J]. Inorganic Chemicals Industry, 2022, 54(3): 59-65.
Fig.6
CV curves of Fe2O3/ATC-1 at different scan rates(a);Constant current charge and discharge curves of Fe2O3/ATC-1 at different current densities(b);Comparison of constant current charge and discharge curves for all samples(c);Ratio Function relationship between capacitance and current density(d);Nyquist curve(e);Nyquist low frequency region amplification curve(f)"
Fig.7
Schematic structure of Fe2O3/ATC-1//NiCoAl-LDH asymmetric supercapacitor(a);CV curves at different voltage intervals(b);CV curves at different scan rates(c);Constant current charge/discharge curves at different current densities(d);Specific capacitance as a function of current density(e);Ragone plot(f);Cycling performance measured at 10 A/g(g);Nyquist curve(h)"
[1] |
DINH K N, LIANG Q, DU C F, et al. Nanostructured metallic transi-tion metal carbides,nitrides,phosphides,and borides for energy sto-rage and conversion[J]. Nano Today, 2019, 25:99-121.
doi: 10.1016/j.nantod.2019.02.008 |
[2] |
MURALEEGOPI C V V, VINODH R, SAMBASIVAM S, et al. Rec-ent progress of advanced energy storage materials for flexible and wearable supercapacitor:From design and development to applicat-ions[J]. Journal of Energy Storage, 2020, 27.Doi: 10.1016/j.est.2019.101035.
doi: 10.1016/j.est.2019.101035 |
[3] |
SETHURAMAN B, PURUSHOTHAMAN K K, MURALIDHARAN G. Synjournal of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors[J]. RSC Advances, 2014, 4(9):4631-4637.
doi: 10.1039/C3RA45025B |
[4] |
SHENG L, JIANG L, WEI T, et al. Spatial charge storage within ho-neycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities[J]. Advanced Energy Materials, 2017, 7(19).Doi: 10.1002/aenm.201700668.
doi: 10.1002/aenm.201700668 |
[5] |
PAN Z, ZHONG J, ZHANG Q, et al. Ultrafast all-solid-state coaxial asymmetric fiber supercapacitors with a high volumetric energy den-sity[J]. Advanced Energy Materials, 2018, 8(14).Doi: 10.1002/aenm.201702946.
doi: 10.1002/aenm.201702946 |
[6] |
HAN J, HIRATA A, DU J, et al. Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage[J]. Nano Energy, 2018, 49:354-362.
doi: 10.1016/j.nanoen.2018.04.063 |
[7] |
LI Y, ZHANG H, WANG S, et al. Facile low-temperature synjournal of hematite quantum dots anchored on a three-dimensional ultra-po-rous graphene-like framework as advanced anode materials for asy-mmetric supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(29):11247-11255.
doi: 10.1039/C6TA02927B |
[8] | JI W, JI J, CUI X, et al. Polypyrrole encapsulation on flower-like po-rous NiO for advanced high-performance supercapacitors[J]. Che-mical Communications, 2015, 51(36):7669-7672. |
[9] |
HAO J, PENG S, LI H, et al. A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapa-citors[J]. Journal of Materials Chemistry A, 2018, 6(33):16094-16100.
doi: 10.1039/C8TA06349D |
[10] | 何启贤, 袁学韬. 基于纳米片状二氧化锰的柔性固态超级电容的性能研究[J]. 无机盐工业, 2018, 50(2):43-45. |
[11] |
QI Z, YOUNIS A, CHU D, et al. A facile and template-free one-pot synjournal of Mn3O4 nanostructures as electrochemical supercapaci-tors[J]. Nano-Micro Letters, 2016, 8(2):165-173.
doi: 10.1007/s40820-015-0074-0 |
[12] | JIA H, WANG Z, LI C, et al. Designing oxygen bonding between reduced graphene oxide and multishelled Mn3O4 hollow spheres for enhanced performance of supercapacitors[J]. Journal of Materi-als Chemistry A, 2019, 7(12):6686-6694. |
[13] | XU W, DAI S, LIU G, et al. CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors[J]. Elec-trochimica Acta, 2016, 203:1-8. |
[14] | CHO E C, CHANG-JIAN C W, LEE K C, et al. Ternary composite based on homogeneous Ni(OH)2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor[J]. Chemical Engineer-ing Journal, 2018, 334:2058-2067. |
[15] | ZHANG H, GAO Q, YANG K, et al. Solvothermally induced α-Fe2O3/graphene nanocomposites with ultrahigh capacitance and excellent rate capability for supercapacitors[J]. Journal of Materi-als Chemistry A, 2015, 3(44):22005-22011. |
[16] | 张硕嘉, 杨玉彬, 唐宇, 等. 高活性Fe2O3@Ni复合电极制备及电化学性能研究[J]. 无机盐工业, 2019, 51(7):24-27. |
[17] |
HE T, TU M, ZHANG J, et al. Nanoparticles of iron nitride encaps-ulated in nitrogen-doped carbon bulk derived from polyaniline/Fe2O3 blends and its electrochemical performance[J]. Particle & Particle Systems Characterization, 2020, 37(7).Doi: 10.1002/ppsc.202000132.
doi: 10.1002/ppsc.202000132 |
[18] |
FU C, MAHADEVEGOWDA A, GRANT P S. Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications[J]. Journal of Materials Chemistry A, 2016, 4(7):2597-2604.
doi: 10.1039/C5TA09141A |
[19] | HUANG X, YU H, CHEN J, et al. Ultrahigh rate capabilities of li-thium-ion batteries from 3D ordered hierarchically porous electro-des with entrapped active nanoparticles configuration[J]. Advan-ced Materials, 2014, 26(8):1296-1303. |
[20] |
CHEN J, XU J, ZHOU S, et al. Template-grown graphene/porous Fe2O3 nanocomposite:A high-performance anode material for pseu-docapacitors[J]. Nano Energy, 2015, 15:719-728.
doi: 10.1016/j.nanoen.2015.05.021 |
[21] |
FANG K, CHEN J, ZHOU X, et al. Decorating biomass-derived po-rous carbon with Fe2O3 ultrathin film for high-performance super-capacitors[J]. Electrochimica Acta, 2018, 261:198-205.
doi: 10.1016/j.electacta.2017.12.140 |
[22] |
ZHAO P, WANG N, HU W, et al. Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor[J]. Ceramics International, 2019, 45(8):10420-10428.
doi: 10.1016/j.ceramint.2019.02.101 |
[23] | SONG Z, LIU W, WEI W, et al. Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel(Fe2O3/rGOA) composites for supercapacitors[J]. Journal of Alloys and Compo-unds, 2016, 685:355-363. |
[24] | SHAN D, YANG J, LIU W, et al. Biomass-derived three-dimensio-nal honeycomb-like hierarchical structured carbon for ultrahigh energy density asymmetric supercapacitors[J]. Journal of Materi-als Chemistry A, 2016, 4(35):13589-13602. |
[25] | LI P, XIE H, WANG X, et al. Sustainable production of nano α-Fe2O3/N-doped biochar hybrid nanosheets for supercapacitors[J]. Sustainable Energy & Fuels, 2020, 4(9):4522-4530. |
[26] | WANG Y, SHEN C, NIU L, et al. Hydrothermal synjournal of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-perfor-mance aqueous asymmetric supercapacitors[J]. Journal of Materi-als Chemistry A, 2016, 4(25):9977-9985. |
[27] |
DONG T, DENG T, CHU X, et al. Carbon intermediate boosted Fe-ZIF derived alpha-Fe2O3 as a high-performance negative electrode for supercapacitors[J]. Nanotechnology, 2020, 31(13).Doi: 10.1088/1361-6528/ab5baf.
doi: 10.1088/1361-6528/ab5baf |
[28] |
DESHMUKH P R, SOHN Y, SHIN W G. Electrochemical perfor-mance of facile developed aqueous asymmetric(Fe,Cr)2O3//MnO2 supercapacitor[J]. Electrochimica Acta, 2018, 285:381-392.
doi: 10.1016/j.electacta.2018.07.197 |
[29] |
LI Y, KANG L, BAI G, et al. Solvothermal synjournal of Fe2O3 loaded activated carbon as electrode materials for high-performance elec-trochemical Capacitors[J]. Electrochimica Acta, 2014, 134:67-75.
doi: 10.1016/j.electacta.2014.04.094 |
[30] |
ZHANG S, YIN B, WANG Z, et al. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods[J]. Chemical Engineering Journal, 2016, 306:193-203.
doi: 10.1016/j.cej.2016.07.057 |
[31] |
KARTHIKEYAN K, AMARESH S, LEE S N, et al. Fluorine-doped Fe2O3 as high energy density electroactive material for hybrid su-percapacitor applications[J]. Chemistry:An Asian Journal, 2014, 9(3):852-857.
doi: 10.1002/asia.v9.3 |
[1] | ZHANG Feigang, LIU Zhongli. Study on application of CuO/g-C3N4 composites in organic dye degradation and supercapacitors [J]. Inorganic Chemicals Industry, 2025, 57(1): 129-136. |
[2] | WU Qingqing, XU Xuetang, WANG Fan. Study on capacitor performance of high⁃mass⁃loading ZnCo-based carbonate hydroxide electrode materials [J]. Inorganic Chemicals Industry, 2024, 56(7): 46-54. |
[3] | ZHOU Xuan, LI Mengrui, CHEN Yichen, FAN Huiqiang, WANG Bin, YUAN Gang. Research progress of nickel-based phosphide composites in improving of catalytic water electrolysis for hydrogen evolution performance [J]. Inorganic Chemicals Industry, 2024, 56(4): 8-15. |
[4] | YAN Zhen, QIU Zhaofu, JIN Xibiao, WANG Yuan, LIU Chang, YANG Ji. Study on 4A molecular sieve loaded with Ce and γ-Fe2O3 for removal of Sb(Ⅲ) and Sb(Ⅴ) in water [J]. Inorganic Chemicals Industry, 2024, 56(1): 81-89. |
[5] | YAN Chaoqun, ZHANG Xianming, WEI Juan, CHENG Zhiliang, XU Qian, ZHANG Xuan. Synthesis of cubic α-Fe2O3 catalyst and its photo-Fenton degradation performance of antibiotic under visible light [J]. Inorganic Chemicals Industry, 2023, 55(8): 28-35. |
[6] | WANG Jianfang, YANG Heping, LI Kaibin, CONG Shiqiang, ZHANG Bojie, GUO Shan. Study on preparation of C3N4/MnCo2S4 composites and their capacitive properties [J]. Inorganic Chemicals Industry, 2023, 55(7): 70-74. |
[7] | XU Xuetang, WANG Xukai, ZHANG Shenhe, HUANG Meixiang, NONG Shuliu, XU Nuo. Study on preparation and properties of vanadate doped NiCo-LDH electrode [J]. Inorganic Chemicals Industry, 2023, 55(5): 52-58. |
[8] | LAN Yinghua, CHEN Yanmei, MA Ruixiao, ZHANG Yanhui. Preparation and photocatalytic performance of Ce-Ti oxide-attapulgite composites [J]. Inorganic Chemicals Industry, 2023, 55(4): 133-140. |
[9] | ZHANG Yanru, REN Changzai, SONG Zhanlong, ZHU Jianjun, ZHAO Baofeng, XIE Hongzhang, WANG Zhenjiang, QI Xiaole. Study on performance of biomass power plant ash as alternative to cement clinker in blended cements [J]. Inorganic Chemicals Industry, 2023, 55(10): 128-135. |
[10] | LIU Jinhang,YANG Zhipeng,CHEN Xiudong,LUO Yuxuan,YU Langhua,WANG Yawei,ZHAN Changchao,CAO Xiaohua. Preparation of new porous carbon and its lithium storage performance [J]. Inorganic Chemicals Industry, 2022, 54(9): 85-89. |
[11] | JIANG Tiantian,XU Xuetang,WANG Fan. Research on growth and supercapacitance of NiCo based electrode materials regulated by halogen ions [J]. Inorganic Chemicals Industry, 2022, 54(8): 66-73. |
[12] | Zhang Tianliang,Li Jun,Xiong Wei,Zhang Haiyan,Tao Xiaoqiu. Study on one-step preparation of activated carbon with high specific surface by K2CO3 activation and its capacitance performance [J]. Inorganic Chemicals Industry, 2022, 54(4): 159-164. |
[13] | LU Zheng,CHEN Kunfeng,XUE Dongfeng. Study on large-scale preparation and electrochemical properties of high thermal stabilized α-Fe2O3 [J]. Inorganic Chemicals Industry, 2022, 54(3): 45-50. |
[14] | LIANG Qunfang,XU Xuetang,WANG Fan. Study on improvement of capacitance performance of NiMn-LDH electrode material by anions exchange [J]. Inorganic Chemicals Industry, 2022, 54(2): 38-44. |
[15] | ZHAO Zhichao,WANG Honglin,WANG Xia,SUN Gang,ZHAO Cuilian,SUN Nannan. Controllable preparation of NiMoO4 nanosheets-based microspheres by hydrothermal method and their supercapacitor properties [J]. Inorganic Chemicals Industry, 2022, 54(2): 60-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297