Inorganic Chemicals Industry ›› 2022, Vol. 54 ›› Issue (3): 18-22.doi: 10.19964/j.issn.1006-4990.2021-0707
• Reviews and Special Topics • Previous Articles Next Articles
WEI Chunguang1(),LIANG Yan1,LI Tong2,LÜ Wei2(
)
Received:
2021-11-20
Online:
2022-03-10
Published:
2022-03-18
Contact:
LÜ Wei
E-mail:wcg319@163.com;lv.wei@sz.tsinghua.edu.cn
CLC Number:
WEI Chunguang,LIANG Yan,LI Tong,LÜ Wei. Research and industrialization progress of aqueous zinc ion battery[J]. Inorganic Chemicals Industry, 2022, 54(3): 18-22.
[1] | 田崔钧, 田君, 陈芬, 等. 锂离子电池安全性测试分析[J]. 重庆理工大学学报:自然科学, 2018, 32(10):34-39. |
[2] |
BECK F, RÜETSCHI P. Rechargeable batteries with aqueous elec-trolytes[J]. Electrochimica Acta, 2000, 45(15):2467-2482.
doi: 10.1016/S0013-4686(00)00344-3 |
[3] |
HUANG Jianhang, GUO Zhaowei, MA Yuanyuan, et al. Recent pro-gress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1).Doi: 10.1002/smtd.201800272.
doi: 10.1002/smtd.201800272 |
[4] | 肖民, 魏超, 姚寿广, 等. 单斜镍锰酸锂在不同离子电解液中的性能研究[J]. 无机盐工业, 2018, 50(7):23-26. |
[5] |
马慧, 张桓荣, 薛面起. 水系钠离子电池的研究进展及实用化挑战[J]. 化学学报, 2021, 79(4):388-405.
doi: 10.6023/A20100492 |
[6] |
陈丽能, 晏梦雨, 梅志文, 等. 水系锌离子电池的研究进展[J]. 无机材料学报, 2017, 32(3):225-234.
doi: 10.15541/jim20160192 |
[7] |
XU Chengjun, LI Baohua, DU Hongda, et al. Energetic zinc ion che-mistry:The rechargeable zinc ion battery[J]. Angewandte Chemie, 2012, 124(4):957-959.
doi: 10.1002/ange.v124.4 |
[8] |
LI Changgang, ZHANG Xudong, HE Wen, et al. Cathode materials for rechargeable zinc-ion batteries:From synjournal to mechanism and applications[J]. Journal of Power Sources, 2020, 449.Doi: 10.1016/j.jpowsour.2019.227596.
doi: 10.1016/j.jpowsour.2019.227596 |
[9] | 杨艳芹, 周谭, 李晓辉, 等. 锌离子电池的发展现状及展望[J]. 西部皮革, 2019, 41(23):94. |
[10] |
FANG Guozhao, ZHOU Jiang, PAN Anqiang, et al. Recent advanc-es in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10):2480-2501.
doi: 10.1021/acsenergylett.8b01426 |
[11] |
SELVAKUMARAN D, PAN Anqiang, LIANG Shuquan, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(31):18209-18236.
doi: 10.1039/C9TA05053A |
[12] | 戴宇航, 甘志伟, 阮雨杉, 等. 水系锌离子电池及关键材料研究进展[J]. 硅酸盐学报, 2021, 49(7):1323-1336. |
[13] |
SONG Ming, TAN Hua, CHAO Dongliang, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41).Doi: 10.1002/adfm.201802564.
doi: 10.1002/adfm.201802564 |
[14] | MING Jun, GUO Jing, XIA Chuan, et al. Zinc-ion batteries:Mate-rials,mechanisms,and applications[J]. Materials Science and En-gineering:R:Reports, 2019, 135:58-84. |
[15] |
ALFARUQI M H, ISLAM S, PUTRO D Y, et al. Structural transfor-mation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery[J]. Electrochimica Acta, 2018, 276:1-11.
doi: 10.1016/j.electacta.2018.04.139 |
[16] |
KONAROV A, VORONINA N, JO Jae Hyeon, et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10):2620-2640.
doi: 10.1021/acsenergylett.8b01552 |
[17] |
XU Dongwei, LI Baohua, WEI Chunguang, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for en-ergy storage with zinc ions[J]. Electrochimica Acta, 2014, 133:254-261.
doi: 10.1016/j.electacta.2014.04.001 |
[18] |
WU Buke, ZHANG Guobin, YAN Mengyu, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J]. Small, 2018, 14(13).Doi: 10.1002/smll.201703850.
doi: 10.1002/smll.201703850 |
[19] |
PAN Huilin, SHAO Yuyan, YAN Pengfei, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1.Doi: 10.1038/nenergy.2016.39.
doi: 10.1038/nenergy.2016.39 |
[20] | SUN Kyung E K, HOANG Tuan K A, DOAN T N L, et al. Suppres-sion of dendrite formation and corrosion on zinc anode of secon-dary aqueous batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(11):9681-9687. |
[21] | STOCK D, DONGMO S, WALTHER F, et al. Homogeneous coating with an anion-exchange ionomer improves the cycling stability of secondary batteries with zinc anodes[J]. ACS Applied Materials & Interfaces, 2018, 10(10):8640-8648. |
[22] |
GUDURU R, ICAZA J. A brief review on multivalent intercalation batteries with aqueous electrolytes[J]. Nanomaterials, 2016, 6(3).Doi: 10.3390/nano6030041.
doi: 10.3390/nano6030041 |
[23] |
HU Lintong, XIAO Ping, XUE Lanlan, et al. The rising zinc anodes for high-energy aqueous batteries[J]. EnergyChem, 2021, 3(2). Doi: 10.1016/j.enchem.2021.100052.
doi: 10.1016/j.enchem.2021.100052 |
[24] | 常立民, 林丽, 聂平. 水系锌离子电池:金属锌负极研究进展[J]. 吉林师范大学学报:自然科学版, 2021, 42(3):8-15. |
[25] |
KANG Litao, CUI Mangwei, JIANG Fuyi, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Advanced Energy Materials, 2018, 8(25).Doi: 10.1002/aenm.201801090.
doi: 10.1002/aenm.201801090 |
[26] | HONG Lin, WU Xiuming, MA Chao, et al. Boosting the Zn-ion tra-nsfer kinetics to stabilize the Zn metal interface for high-perfor-mance rechargeable Zn-ion batteries[J]. Journal of Materials Che-mistry A, 2021, 9(31):16814-16823. |
[27] |
XIA Aolin, PU Xiaoming, TAO Yayuan, et al. Graphene oxide spon-taneous reduction and self-assembly on the zinc metal surface en-abling a dendrite-free anode for long-life zinc rechargeable aqueous batteries[J]. Applied Surface Science, 2019, 481:852-859.
doi: 10.1016/j.apsusc.2019.03.197 |
[28] |
QIN Runzhi, WANG Yuetao, ZHANG Mingzheng, et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries[J]. Nano Energy, 2021, 80.Doi: 10.1016/j.nanoen.2020.105478.
doi: 10.1016/j.nanoen.2020.105478 |
[29] |
PARKER J F, CHERVIN C N, PALA I R, et al. Rechargeable nic-kel-3D zinc batteries:An energy-dense,safer alternative to lithi-um-ion[J]. Science, 2017, 356(6336):415-418.
doi: 10.1126/science.aak9991 |
[30] |
TAO Haisheng, TONG Xiang, GAN Lu, et al. Effect of adding vari-ous carbon additives to porous zinc anode in rechargeable hybrid aqueous battery[J]. Journal of Alloys and Compounds, 2016, 658:119-124.
doi: 10.1016/j.jallcom.2015.10.225 |
[31] |
MAINAR A R, COLMENARES L C, BLÁZQUEZ J A, et al. A brief overview of secondary zinc anode development:The key of improv-ing zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3):903-918.
doi: 10.1002/er.v42.3 |
[32] |
ZHANG Ning, CHENG Fangyi, LIU Junxiang, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8.Doi: 10.1038/s41467-017-00467-x.
doi: 10.1038/s41467-017-00467-x |
[33] |
WANG Fei, BORODIN Oleg, GAO Tao, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17(6):543-549.
doi: 10.1038/s41563-018-0063-z |
[34] |
GUO Shan, QIN Liping, ZHANG Tengsheng, et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion bat-teries[J]. Energy Storage Materials, 2021, 34:545-562.
doi: 10.1016/j.ensm.2020.10.019 |
[35] |
CUI Jin, LIU Xiaoyu, XIE Yihua, et al. Improved electrochemical reversibility of Zn plating/stripping:A promising approach to sup-press water-induced issues through the formation of H-bonding[J]. Materials Today Energy, 2020, 18.Doi: 10.1016/j.mtener.2020.100563.
doi: 10.1016/j.mtener.2020.100563 |
[36] | NIAN Qingshun, WANG Jiayue, LIU Shuang, et al. Aqueous batte-ries operated at -50 ℃[J]. Angewandte Chemie International Edi-tion, 2019, 58(47):16994-16999. |
[37] | LI Hongfei, HAN Cuiping, HUANG Yan, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11(4):941-951. |
[38] |
GUO Xun, ZHOU Jiang, BAI Chaolei, et al. Zn/MnO2 battery che-mistry with dissolution-deposition mechanism[J]. Materials Today Energy, 2020, 16.Doi: 10.1016/j.mtener.2020.100396.
doi: 10.1016/j.mtener.2020.100396 |
[1] | YANG Fu, XIE Yulong. Study on preparation and Na+ doping modification of ternary material LiNi0.65Co0.15Mn0.2O2 [J]. Inorganic Chemicals Industry, 2025, 57(3): 43-49. |
[2] | SONG Jiaxi, JI Renfei, CHEN Jun, LIN Sen, YU Jianguo. Research on characteristics analysis and pretreatment on deeply deactivated power battery ternary cathode materials [J]. Inorganic Chemicals Industry, 2025, 57(2): 44-49. |
[3] | KONG Lingjie, LI Guangbi, XIE Jiahao, YANG Xinhui, BAI Xiaoqin. Research progress on lithium extraction technology from salt lake brine [J]. Inorganic Chemicals Industry, 2025, 57(1): 14-26. |
[4] | TIAN Peng, ZHANG Haoran, XU Jingang, MOU Chenxi, XU Qianjin, NING Guiling. Study on aluminum sol modified anode and cathode materials for lithium ion batteries [J]. Inorganic Chemicals Industry, 2024, 56(9): 44-53. |
[5] | CHEN Xue, OUYANG Quansheng, SHAO Jiaojing. Recent research progress of lithium-sulfur batteries based on solid-solid reaction mechanism [J]. Inorganic Chemicals Industry, 2024, 56(9): 12-23. |
[6] | SU Baocai, ZHANG Qin, XIE Yuanjian, CAI Pingxiong, PAN Yuanfeng. Advances in synthesis methods and structural modification of LiMnFePO4 materials [J]. Inorganic Chemicals Industry, 2024, 56(7): 28-36. |
[7] | WANG Junting, MA Hang, ZHA Zuotong, WAN Banglong, ZHANG Zhenhuan. Research progress of iron phosphate industrial wastewater treatment process [J]. Inorganic Chemicals Industry, 2024, 56(6): 26-33. |
[8] | LIU Dexin, MA Tengyue, AN Jinling, LIU Jinrong, HE Weiyan. Study on cathode material design and electrochemical properties of manganese-based sodium ion battery [J]. Inorganic Chemicals Industry, 2024, 56(3): 51-55. |
[9] | ZHOU Huang, HU Xiaoping, REN Wen, CAO Xinxin. Preparation and sodium storage properties of sulfur-doped Na3(VOPO4)2F cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(2): 30-37. |
[10] | GE Jianhua, XIE Minyan, OUYANG Quansheng, SHAO Jiaojing. Advances in regeneration processes of cathode materials for spent power batteries [J]. Inorganic Chemicals Industry, 2024, 56(12): 79-87. |
[11] | ZHAO Runze, QIAN A′niu. Research progress of lithium recovery for spent lithium-ion batteries and preparation in battery-grade lithium carbonate [J]. Inorganic Chemicals Industry, 2024, 56(12): 70-78. |
[12] | LIU Jiasheng, LUO Xiaoqiang, HOU Cuihong, XUE Lingwei. Effects of fluorine doping on electrochemical behavior of LiMn0.8Fe0.2PO4/C cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(11): 45-50. |
[13] | LIU Juan, JIANG Qinglai, ZHANG Yueyi. Study on Al-Zn co-doping of 4.6 V high voltage lithium cobalt oxide cathode materials [J]. Inorganic Chemicals Industry, 2024, 56(11): 59-64. |
[14] | MA Lianren, XIE Hongyan. Study on preparation of LiMn0.7Fe0.3PO4/C cathode materials by two-step solid-phase method with surfactant [J]. Inorganic Chemicals Industry, 2024, 56(11): 39-44. |
[15] | XU You, MA Luxiang, HAI Chunxi, DONG Shengde, XU Qi, HE Xin, PAN Wencheng, GAO Yawen, CHEN Ju, SUN Yanxia, ZHOU Yuan. Research progress and industrialization challenge of coal-based hard carbon anode materials for sodium ion batteries [J]. Inorganic Chemicals Industry, 2024, 56(11): 30-38. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 492
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297