Inorganic Chemicals Industry ›› 2021, Vol. 53 ›› Issue (9): 1-5.doi: 10.19964/j.issn.1006-4990.2021-0043
• Reviews and Special Topics • Next Articles
Zhang Guangpeng1(),Wu Huijun1,2(
),Liu Yanchen1,2,Yang Lixiu1,2
Received:
2021-01-19
Online:
2021-09-10
Published:
2021-09-08
Contact:
Wu Huijun
E-mail:tumuzgp@163.com;wuhuijun@tsinghua.org.cn
CLC Number:
Zhang Guangpeng,Wu Huijun,Liu Yanchen,Yang Lixiu. Silica aerogel insulation materials and their application for building carbon reduction[J]. Inorganic Chemicals Industry, 2021, 53(9): 1-5.
[1] |
Schiavoni S, D′Alessandro F, Bianchi F, et al. Insulation materials for the building sector:A review and comparative analysis[J]. Renewable and Sustainable Energy Reviews, 2016, 62:988-1011.
doi: 10.1016/j.rser.2016.05.045 |
[2] |
Jelle B P. Traditional,state-of-the-art and future thermal building insulation materials and solutions-properties,requirements and possibilities[J]. Energy and Buildings, 2011, 43(10):2549-2563.
doi: 10.1016/j.enbuild.2011.05.015 |
[3] |
Yin X Q, Li H Q, Bo H T, et al. Weatherability studies on external insulation thermal system of expanded polystyrene board,polystyrene granule and polyurethane foam[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2010, 25(6):1027-1032.
doi: 10.1007/s11595-010-0143-7 |
[4] |
Lin J, Xiao H H, An W G, et al. Correlation study between flammability and the width of organic thermal insulation materials for building exterior walls[J]. Energy and Buildings, 2014, 82:243-249.
doi: 10.1016/j.enbuild.2014.06.013 |
[5] |
Cuce E, Cuce P M, Wood C J, et al. Toward aerogel based thermal superinsulation in buildings:A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2014, 34(3):273-299.
doi: 10.1016/j.rser.2014.03.017 |
[6] |
Aditya L, Mahlia T M I, Rismanchi B, et al. A review on insulation materials for energy conservation in buildings[J]. Renewable and Sustainable Energy Reviews, 2017, 73:1352-1365.
doi: 10.1016/j.rser.2017.02.034 |
[7] | 张红林, 王翠翠, 杨辉, 等. 非金属矿物材料在无机保温材料中的应用及进展[J]. 中国非金属矿工业导刊, 2019(4):7-9,19. |
[8] | 塔桂欣. 非金属矿物材料在无机保温材料中的应用[J]. 建筑技术开发, 2020, 47(18):146-147. |
[9] | Sachithanadam M, Joshi S C. Silica aerogel composites[M]. Singa-pore:Springer Singapore, 2016. |
[10] |
Maleki H. Recent advances in aerogels for environmental remedia-tion applications:A review[J]. Chemical Engineering Journal, 2016, 300:98-118.
doi: 10.1016/j.cej.2016.04.098 |
[11] |
Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation:An overview[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3):315-339.
doi: 10.1007/s10971-012-2792-9 |
[12] |
Papadopoulos A M. State of the art in thermal insulation materials and aims for future developments[J]. Energy and Buildings, 2005, 37(1):77-86.
doi: 10.1016/j.enbuild.2004.05.006 |
[13] |
Maleki H, Duraes L, Portugal A. A new trend for development of mechanically robust hybrid silica aerogels[J]. Materials Letters, 2016, 179:206-209.
doi: 10.1016/j.matlet.2016.05.085 |
[14] | Aegerter M A, Leventis N, Koebel M M. Aerogels handbook[M]. New York:Springer New York, 2011. |
[15] | 吕亚军, 靳卫准, 吴会军, 等. SiO2气凝胶在建筑中的应用探究[J]. 工业建筑, 2018, 48(4):99-105. |
[16] |
He Y L, Xie T. Advances of thermal conductivity models of nano-scale silica aerogel insulation material[J]. Applied Thermal Engineering, 2015, 81:28-50.
doi: 10.1016/j.applthermaleng.2015.02.013 |
[17] |
Li Z, Gong L L, Cheng X D, et al. Flexible silica aerogel composit-es strengthened with aramid fibers and their thermal behavior[J]. Materials and Design, 2016, 99:349-355.
doi: 10.1016/j.matdes.2016.03.063 |
[18] | 魏鹏湾, 闫共芹, 赵冠林, 等. 二氧化硅气凝胶复合隔热材料研究进展[J]. 无机盐工业, 2016, 48(10):1-6. |
[19] | 高睿, 周张健, 张宏博, 等. 二氧化硅气凝胶高温稳定性研究[J]. 无机盐工业, 2019, 51(9):50-53. |
[20] |
Lu Z, Yuan Z, Liu Q, et al. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites[J]. Materials Science and Engineering A, 2015, 625:278-287.
doi: 10.1016/j.msea.2014.12.007 |
[21] | 吴会军, 廖云丹, 丁云飞. 定向纤维气凝胶隔热复合材料及其制备方法:中国,102503356A[P]. 2012-06-20. |
[22] |
Berardi D U, Sprengard C. An overview of and introduction to current researches on super insulating materials for high-performance buildings[J]. Energy and Buildings, 2020, 214.Doi: 10.1016/j.en-build.2020.109890.
doi: 10.1016/j.en-build.2020.109890 |
[23] | Yang J M, Wu H J, Huang G S, et al. Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aero-gel composites for super-thermal insulation[J]. Materials & Design, 2017, 133:224-236. |
[24] | Muralitharan R S, Ramasamy V. Development of lightweight con-crete for structural applications[J]. Journal of Structural Engineering, 2017, 44(4):1-5. |
[25] |
Mikulica K, Labaj M. Foam concrete gravity wedges as a thermal insulation of flat roofs[J]. Key Engineering Materials, 2016, 722:331-336.
doi: 10.4028/www.scientific.net/KEM.722 |
[26] |
Zhang B, Poon C S. Use of furnace bottom ash for producing light-weight aggregate concrete with thermal insulation properties[J]. Journal of Cleaner Production, 2015, 99(15):94-100.
doi: 10.1016/j.jclepro.2015.03.007 |
[27] | Hu C, Li H, Liu Z W, et al. Research on properties of foamed concrete reinforced with small sized glazed hollow beads[J]. Advances in Materials Science and Engineering, 2016, 2016:1-8. |
[28] | Zhang Z H, Provis J L, Reid A, et al. Mechanical,thermal insulation,thermal resistance and acoustic absorption properties of geopolymer foam concrete[J]. Cement & Concrete Composites, 2015, 62:97-105. |
[29] |
Zhang H Y, Yang J M, Wu H J, et al. Dynamic thermal performance of ultra-light and thermal-insulative aerogel foamed concrete for building energy efficiency[J]. Solar Energy, 2020, 204:569-576.
doi: 10.1016/j.solener.2020.04.092 |
[30] |
Liu S J, Zhu K M, Cui S, et al. A novel building material with low thermal conductivity:Rapid synjournal of foam concrete reinforced silica aerogel and energy performance simulation[J]. Energy and Buildings, 2018, 177:385-393.
doi: 10.1016/j.enbuild.2018.08.014 |
[31] |
Li P W, Wu H J, Liu Y C, et al. Preparation and optimization of ul-tra-light and thermal insulative aerogel foam concrete[J]. Construction and Building Materials, 2019, 205:529-542.
doi: 10.1016/j.conbuildmat.2019.01.212 |
[32] | Hoseini A, McCague C, Andisheh-Tadbir M, et al. Aerogel blan-kets:From mathematical modeling to material characterization and experimental analysis[J]. Internatioal Journal of Heat and Mass Transfer, 2016, 93(2):1124-1131. |
[33] | 梁玉莹, 吴会军, 黄仁达, 等. SiO2气凝胶复合材料的隔热和力学性能优化[J]. 硅酸盐通报, 2017, 36(5):1693-1699. |
[34] |
Yang J M, Wu H J, Xu X H, et al. Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency[J]. Renewable Energy, 2019, 138:445-457.
doi: 10.1016/j.renene.2019.01.120 |
[35] |
Ibrahim M, Nocentini K, Stipetic M, et al. Multi-field and multi-sc-ale characterization of novel super insulating panels/systems based on silica aerogels:Thermal,hydric,mechanical,acoustic,and fire performance[J]. Building and Environment, 2019, 151:30-42.
doi: 10.1016/j.buildenv.2019.01.019 |
[36] |
Merli F, Anderson A M, Carroll M K, et al. Acoustic measurements on monolithic aerogel samples and application of the selected solutions to standard window systems[J]. Applied Acoustics, 2018, 142:123-131.
doi: 10.1016/j.apacoust.2018.08.008 |
[37] |
Valachova D, Zdrazilova N, Panovec V, et al. Using of aerogel to improve thermal insulating properties of windows[J]. Civil and Environmental Engineering, 2018, 14(1):2-11.
doi: 10.2478/cee-2018-0001 |
[38] |
Thakoor S. Aerogel glazing-an emerging energy efficient technology for windows[J]. International Journal of Engineering Research, 2018, 7(special 2):147-148.
doi: 10.5958/2319-6890.2018.00043.0 |
[39] |
Garnier C, Muneer T, McCauley L. Super insulated aerogel windows:Impact on daylighting and thermal performance[J]. Building and Environment, 2015, 94(part 1):231-238.
doi: 10.1016/j.buildenv.2015.08.009 |
[40] |
Buratti C, Moretti E, Zinzi M, et al. High energy-efficient windows with silica aerogel for building refurbishment:Experimental characterization and preliminary simulations in different climate conditions[J]. Buildings, 2017, 7(1).Doi: 10.3390/buildings7010008.
doi: 10.3390/buildings7010008 |
[41] | 吕亚军, 吴会军, 王珊, 等. 气凝胶建筑玻璃透光隔热性能及影响因素[J]. 土木建筑与环境工程, 2018, 40(1):134-140. |
[42] |
Lolli N, Andresen I. Aerogel vs.argon insulation in windows:A greenhouse gas emissions analysis[J]. Building and Environment, 2016, 101:64-76.
doi: 10.1016/j.buildenv.2016.03.001 |
[1] | SUN Yongjun,ZHENG Huaili. Development trend of inorganic aluminum iron salt coagulant under carbon peak and carbon neutralization mode [J]. Inorganic Chemicals Industry, 2022, 54(4): 55-60. |
[2] | GONG Jiazhu,ZHOU Guimin,WU Ninglan,WANG Weilin,QIAO Guangqin. Challenges and innovative development opportunities of carbon peak and carbon neutralization faced by inorganic salt industry [J]. Inorganic Chemicals Industry, 2022, 54(4): 46-54. |
[3] | Hu Xu,Dong Lingyu,Li Wencui,Hao Guangping. Preparation of transition metal-nitrogen co-doped porous carbon-based CO2electro-reduction catalyst through photochemical method [J]. Inorganic Chemicals Industry, 2021, 53(6): 8-13. |
[4] | WEI Peng-Wan, YAN Gong-Qin, ZHAO Guan-Lin, HE Fei. Research progress of silica aerogel composites for thermal insulation [J]. INORGANICCHEMICALSINDUSTRY, 2016, 48(10): 1-. |
[5] | ZHU Jian-Jun, JIANG De-Li, WEI Wei, XIE Ji-Min. Analysis on transmittance of hydrophobic silica aerogels prepared at ambient pressure [J]. INORGANICCHEMICALSINDUSTRY, 2013, 45(12): 21-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|
Copyright © 2021 Editorial Office of Inorganic Chemicals Industry
Add:No.3 Road Dingzigu,Hongqiao District,Tianjin,China
E-mail:book@wjygy.com.cn 违法和不良信息举报电话: 022-26689297